Quantitative Precipitation Estimation (QPE) by exploiting the potential of advanced radar observations and data assimilation

通过利用先进雷达观测和数据同化的潜力进行定量降水估算(QPE)

基本信息

项目摘要

The overarching objective of this project is to improve hydrological modeling on the mesoscale by providing quantitative ground precipitation estimates (QPE) in an adequate spatiotemporal resolution. Target scale is 1.000 km² in 1000 m / 1 hour resolution. To this end, we will investigate and combine two QPE approaches: The first is to combine convection-permitting atmospheric modeling and new observations using advanced data assimilation techniques (Variational techniques, Ensemble Kalman Filters and combinations thereof). Key observations are C-band radar reflectivity, radial velocity, and polarization, Micro Rain Radar (MRR) vertical profiles of reflectivity, rain rate, and drop size distribution (DSD), as well as distrometer DSD. Particularly, we are exploring the value of MRR observations and of C-Band radar polarimetric measurements. High-resolution DA is a promising tool for QPE as it takes full advantage of the 3D information content of radar data. The physically consistent 3D thermodynamic field produced by the model allows quality control of observational data and acts as a dynamic-physical interpolator at unobserved locations. The second approach is QPE based on advanced observations, consisting of a synergy of radar reflectivity and polarization measurements, as well as MRR, distrometer, and raingauge observations using advanced geostatistical interpolation and simulation techniques. We will also explore ways to produce hybrid combinations of modeland observation-based QPE fields. Test area is the Alzette catchment in Luxembourg (1090 km²), with the focus area of the research unit, Attert (288 km²), nested within.
该项目的首要目标是通过提供具有适当时空分辨率的定量地面降水估计数,改进中尺度水文模拟。目标尺度为1.000 km²,分辨率为1000 m / 1小时。为此,我们将研究和联合收割机两个QPE方法:第一个是联合收割机结合对流允许大气模拟和新的观测使用先进的数据同化技术(变分技术,Encourage卡尔曼滤波器及其组合)。主要观测数据包括C波段雷达反射率、径向速度和偏振、微雨雷达反射率垂直廓线、降雨率和液滴大小分布,以及distrometer DSD。特别是,我们正在探索的价值MRR观测和C波段雷达极化测量。高分辨率DA是一个很有前途的工具,QPE,因为它充分利用了雷达数据的三维信息内容。物理上一致的三维热力学场模型产生的观测数据的质量控制,并作为一个动态的物理观测在未观察到的位置。第二种方法是基于先进观测的QPE,包括雷达反射率和偏振测量的协同作用,以及使用先进的地质统计插值和模拟技术的MRR,distrometer和雨量计观测。我们还将探讨如何产生混合组合的模型和观测为基础的QPE字段。测试区域是卢森堡的Alzette集水区(1090 km²),研究单位的重点区域Attert(288 km²)嵌套在其中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Uwe Ehret其他文献

Dr.-Ing. Uwe Ehret的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr.-Ing. Uwe Ehret', 18)}}的其他基金

Towards consistent predictions of water and energy cycles in intermediate scale catchments
对中等规模流域的水和能源循环进行一致的预测
  • 批准号:
    274054947
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Units
Unified diagnostic evaluation of physics-based, data-driven and hybrid hydrological models based on information theory (UNITE)
基于信息论的基于物理、数据驱动和混合水文模型的统一诊断评估(UNITE)
  • 批准号:
    507884992
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Deep Learning for Enhanced Multisensor Quantitative Precipitation Estimation
用于增强型多传感器定量降水估算的深度学习
  • 批准号:
    RGPIN-2018-05769
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Deep Learning for Enhanced Multisensor Quantitative Precipitation Estimation
用于增强型多传感器定量降水估算的深度学习
  • 批准号:
    RGPIN-2018-05769
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Deep Learning for Enhanced Multisensor Quantitative Precipitation Estimation
用于增强型多传感器定量降水估算的深度学习
  • 批准号:
    RGPIN-2018-05769
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Deep Learning for Enhanced Multisensor Quantitative Precipitation Estimation
用于增强型多传感器定量降水估算的深度学习
  • 批准号:
    RGPIN-2018-05769
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Deep Learning for Enhanced Multisensor Quantitative Precipitation Estimation
用于增强型多传感器定量降水估算的深度学习
  • 批准号:
    RGPIN-2018-05769
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative Precipitation Estimation by Real-Time Estimation of Drop Size Distribution Using Polarimetric Radar
使用偏振雷达实时估计液滴尺寸分布来估计定量降水
  • 批准号:
    23686072
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Quantitative precipitation estimation and uncertainty quantification (D05)
降水定量估算和不确定性量化(D05)
  • 批准号:
    40997307
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    CRC/Transregios
CAREER: Improved Knowledge on Precipitation Microphysics for Advancing Radar Rainfall Estimation and Quantitative Precipitation Forecasting.
职业:提高降水微物理知识,推进雷达降雨估算和定量降水预报。
  • 批准号:
    0132942
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Scale-Recursive Estimation of Precipitation for Applications to Quantitative Precipitation Forecast (QPF) Verification and Multisensor Estimation
合作研究:降水的尺度递归估计应用于定量降水预报(QPF)验证和多传感器估计
  • 批准号:
    0130396
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Scale-Recursive Estimation of Precipitation for Applications to Quantitative Precipitation Forecast (QPF) Verification and Multisensor Estimation
合作研究:降水的尺度递归估计应用于定量降水预报(QPF)验证和多传感器估计
  • 批准号:
    0130394
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了