Classical and Quantum Geometric Langlands Correspondence

经典与量子几何朗兰兹对应

基本信息

  • 批准号:
    1063470
  • 负责人:
  • 金额:
    $ 70.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

For a smooth complete algebraic curve X over an algebraically closed field k, and a reductive group G, there is a fundamental object called the moduli space of G-bundles on X, and denoted Bun(G). The theory of automorphic sheaves, which is a geometrization of the classical theory of automorphic functions, studies various categories of sheaves on Bun(G). Most fundamentally, we study the (derived) category of quasi-coherent sheaves QCoh(Bun(G)), as well as various categories of twisted D-modules. The goal of Geometric Langlands Correspondence is to study the remarkable relation of this category to the similarly defined category for another reductive group, called the Langlands dual of G. As was discovered in the middle of the 20th century, one can give a list of all fundamental laws of symmetry that occur in nature--these are classified by Dynkin diagrams, also known as root systems. Our fundamental object of study, the theory of automorphic sheaves, couples these symmetry laws with another fundamental object in modern mathematics, namely algebraic curves (also known in their incarnation as Riemann surfaces). The discovery of Langlands correspondence indicates that the theory of automorphic sheaves admits additional symmetries of its own. The current project aims to study these new symmetries at their most fundamental.
对于代数闭域k上的光滑完全代数曲线X和约化群G,存在一个基本对象,称为X上G束的模空间,记作Bun(G)。自同构轴理论是经典自同构函数理论的几何化,研究了Bun(G)上的各种类型的轴。最根本的是,我们研究了准相干束QCoh(Bun(G))的(派生)范畴,以及扭曲d模的各种范畴。几何朗兰兹对偶的目标是研究这个范畴与另一个约化群的相似定义范畴之间的显著关系,这个约化群被称为g的朗兰兹对偶。正如20世纪中叶发现的那样,人们可以列出自然界中出现的所有基本对称定律——这些定律被Dynkin图(也称为根系统)分类。我们研究的基本对象,自同构轴理论,将这些对称定律与现代数学中的另一个基本对象,即代数曲线(也称为黎曼曲面)相结合。朗兰兹对应的发现表明自同构轴理论承认其自身的额外对称性。目前的项目旨在从最基本的角度研究这些新的对称性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dennis Gaitsgory其他文献

Modules over the small quantum group and semi-infinite flag manifold
小量子群和半无限标志流形上的模
  • DOI:
    10.1007/s00031-005-0401-5
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Sergey Arkhipov;R. Bezrukavnikov;Alexander Braverman;Dennis Gaitsgory;I. Mirkovic
  • 通讯作者:
    I. Mirkovic
Local terms for the categorical trace
范畴迹的局部术语
  • DOI:
    10.1016/j.aim.2025.110223
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Dennis Gaitsgory;Yakov Varshavsky
  • 通讯作者:
    Yakov Varshavsky
Parameterization of factorizable line bundles by K-theory and motivic cohomology
  • DOI:
    10.1007/s00029-020-00565-7
  • 发表时间:
    2020-06-22
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Dennis Gaitsgory
  • 通讯作者:
    Dennis Gaitsgory
A tribute to Sasha Beilinson
  • DOI:
    10.1007/s00029-018-0399-x
  • 发表时间:
    2018-02-16
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Michael Finkelberg;Dennis Gaitsgory;Alexander Goncharov;Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk
The Mathematics of Joseph Bernstein
  • DOI:
    10.1007/s00029-016-0291-5
  • 发表时间:
    2016-11-04
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Roman Bezrukavnikov;Alexander Braverman;Michael Finkelberg;Dennis Gaitsgory
  • 通讯作者:
    Dennis Gaitsgory

Dennis Gaitsgory的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dennis Gaitsgory', 18)}}的其他基金

Local and Global Geometric Langlands Correspondence
本地和全球朗兰兹几何对应
  • 批准号:
    1707662
  • 财政年份:
    2017
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Continuing Grant
Representations of affine Kac-Moody algebras and representations of Groups over a 2-dimensional local field
仿射 Kac-Moody 代数的表示和二维局部域上群的表示
  • 批准号:
    0600903
  • 财政年份:
    2006
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Continuing Grant
Geometric Langlands Correspondence
几何朗兰兹对应
  • 批准号:
    9800511
  • 财政年份:
    1998
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
  • 批准号:
    DDG-2022-00024
  • 财政年份:
    2022
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Discovery Development Grant
Classical and quantum theory with geometric algebra
经典和量子理论与几何代数
  • 批准号:
    6185-2001
  • 财政年份:
    2004
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Discovery Grants Program - Individual
Classical and quantum theory with geometric algebra
经典和量子理论与几何代数
  • 批准号:
    6185-2001
  • 财政年份:
    2003
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Discovery Grants Program - Individual
Classical and quantum theory with geometric algebra
经典和量子理论与几何代数
  • 批准号:
    6185-2001
  • 财政年份:
    2002
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Discovery Grants Program - Individual
Classical and quantum theory with geometric algebra
经典和量子理论与几何代数
  • 批准号:
    6185-2001
  • 财政年份:
    2001
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric structure of classical and quantum mechanics and field theory
经典和量子力学以及场论的几何结构
  • 批准号:
    8091-1994
  • 财政年份:
    1997
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Geometric structure of classical and quantum mechanics and field theory
经典和量子力学以及场论的几何结构
  • 批准号:
    8091-1994
  • 财政年份:
    1996
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Geometric structure of classical and quantum mechanics and field theory
经典和量子力学以及场论的几何结构
  • 批准号:
    8091-1994
  • 财政年份:
    1995
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Geometric structure of classical and quantum mechanics and field theory
经典和量子力学以及场论的几何结构
  • 批准号:
    8091-1994
  • 财政年份:
    1994
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Geometric structure of classical and quantum mechanics and field theory
经典和量子力学以及场论的几何结构
  • 批准号:
    8091-1993
  • 财政年份:
    1993
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Subatomic Physics Envelope - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了