NetSE: Medium: Modeling and Analysis of Network Dynamics
NetSE:媒介:网络动态建模与分析
基本信息
- 批准号:1065133
- 负责人:
- 金额:$ 78.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There has been a rapid increase in the number and types of digital networks over the last 2 decades beginning, of course with the Internet, its constituent networks, and the World Wide Web. We now have a wide range of on-line social networks (OSNs) such as Facebook, Twitter, mobile ad hoc networks (MANETs) and delay tolerant networks (DTNs). These networks pervade all aspects of our lives and provide a growing range of services in commerce, business, communications, and connectivity. Many of these networks are continually in a dynamic state of flux and/or extremely large. For example, the topology of a MANET or a DTN is constantly changing, and that of an OSN such as Facebook is rapidly growing and evolving. The modeling, analysis, and measurement of such networks are challenging, due to their dynamism and sizes. As a consequence, traditional mathematical techniques are not suitable and fundamentally new techniques are needed.This research will focus on three interrelated problems. The first is to develop useful and accurate models that capture the dynamics of today?s social and technological networks. The second is to develop and study a class of techniques for characterizing and searching such networks. These techniques are based on a very simple mechanism, namely to let an agent explore the network by randomly choosing where to go. This is known as a random walk in the mathematics literature and has been shown to exhibit desirable search and characterization properties in static networks that shows promise in dynamic networks. Last, many static networks exhibit what is known as a power law, namely that the distribution for the number of neighbors of a node roughly decays as k−a where k is the number of neighbors and a is a positive constant greater than one. The third problem is to understand what constitutes a power law in a dynamic network, how this power law comes to be, and what implications there might be regarding the health of the network.Broader Impact. The work will positively impact society by providing a deeper understanding of and a set of tools for managing and monitoring digital networks such as MANETs and OSNs. The project includes a comprehensive dissemination plan including public release of tools for network characterization. The education plan includes cross-specialty seminars, undergraduate involvement in research through a REU site, and international outreach to South America.
在过去的20年里,数字网络的数量和类型迅速增加,当然是从互联网、其组成网络和万维网开始的。我们现在有广泛的在线社交网络(OSN),如Facebook,Twitter,移动的ad hoc网络(MANN)和延迟容忍网络(DTN)。这些网络渗透到我们生活的各个方面,并在商业、通信和连接方面提供越来越多的服务。这些网络中的许多网络持续处于动态的流动状态和/或非常大。例如,MANET或DTN的拓扑结构不断变化,而OSN(如Facebook)的拓扑结构正在快速增长和发展。由于这些网络的动态性和规模,其建模、分析和测量具有挑战性。因此,传统的数学方法已不适用,需要从根本上的新技术。第一个是开发有用和准确的模型,捕捉今天的动态?的社会和技术网络。第二是开发和研究一类用于表征和搜索此类网络的技术。这些技术基于一个非常简单的机制,即让代理通过随机选择去哪里来探索网络。这在数学文献中被称为随机游走,并已被证明在静态网络中表现出理想的搜索和表征特性,在动态网络中表现出希望。最后,许多静态网络表现出所谓的幂律,即节点的邻居数量的分布大致衰减为k a,其中k是邻居的数量,a是大于1的正常数。第三个问题是要理解动态网络中的幂律是什么,幂律是如何形成的,以及它对网络的健康状况有什么影响。这项工作将对社会产生积极的影响,提供更深入的理解和一套工具来管理和监控数字网络,如MANN和OSN。该项目包括一个全面的传播计划,包括公开发布网络特征描述工具。教育计划包括跨专业研讨会,本科生通过REU网站参与研究,以及对南美洲的国际推广。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald Towsley其他文献
Donald Towsley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald Towsley', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: Design and Analysis of Quantum Networks for Entanglement Distribution
合作研究: CNS 核心:媒介:纠缠分布的量子网络设计与分析
- 批准号:
1955744 - 财政年份:2020
- 资助金额:
$ 78.02万 - 项目类别:
Continuing Grant
EAGER: USBRCCR: Improving Network Security at the Network Edge
EAGER:USBRCCR:提高网络边缘的网络安全性
- 批准号:
1740895 - 财政年份:2017
- 资助金额:
$ 78.02万 - 项目类别:
Standard Grant
TWC: Medium: Limits and Algorithms for Covert Communications
TWC:媒介:隐蔽通信的限制和算法
- 批准号:
1564067 - 财政年份:2016
- 资助金额:
$ 78.02万 - 项目类别:
Continuing Grant
NeTS: Small: Design, Management, and Optimization of Cache Networks
NeTS:小型:缓存网络的设计、管理和优化
- 批准号:
1617437 - 财政年份:2016
- 资助金额:
$ 78.02万 - 项目类别:
Standard Grant
NeTS: Large: Collaborative Research: Complex Interactions in the Content Distribution Ecosystem
NeTS:大型:协作研究:内容分发生态系统中的复杂交互
- 批准号:
1413998 - 财政年份:2014
- 资助金额:
$ 78.02万 - 项目类别:
Continuing Grant
Student Travel Support for SIGMETRICS/Performance 2012
SIGMETRICS/Performance 2012 学生旅行支持
- 批准号:
1239675 - 财政年份:2012
- 资助金额:
$ 78.02万 - 项目类别:
Standard Grant
NeTS: Small: Design and Initialization of Secure Wireless Networks: Foundations and Practice
NetS:小型:安全无线网络的设计和初始化:基础和实践
- 批准号:
1018464 - 财政年份:2010
- 资助金额:
$ 78.02万 - 项目类别:
Standard Grant
DC: Small:Collaborative Research: Managing Extreme-Scale Data Intensive Computing: Fundamental Design and Control Strategies
DC:小型:协作研究:管理超大规模数据密集型计算:基本设计和控制策略
- 批准号:
0916726 - 财政年份:2009
- 资助金额:
$ 78.02万 - 项目类别:
Standard Grant
NeTS-WN: Collaborative Research: Cooperative Wireless Networking: Foundations and Practice
NeTS-WN:协作研究:协作无线网络:基础与实践
- 批准号:
0721861 - 财政年份:2007
- 资助金额:
$ 78.02万 - 项目类别:
Continuing Grant
CT-ISG: Modeling, Estimation, and Defense against Network Attacks
CT-ISG:建模、估计和网络攻击防御
- 批准号:
0524323 - 财政年份:2005
- 资助金额:
$ 78.02万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 78.02万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 78.02万 - 项目类别:
Continuing Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 78.02万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223985 - 财政年份:2023
- 资助金额:
$ 78.02万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223986 - 财政年份:2023
- 资助金额:
$ 78.02万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 78.02万 - 项目类别:
Standard Grant
III: Medium: Advancing Deep Learning for Inverse Modeling
III:媒介:推进逆向建模的深度学习
- 批准号:
2313174 - 财政年份:2023
- 资助金额:
$ 78.02万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 78.02万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310262 - 财政年份:2023
- 资助金额:
$ 78.02万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310261 - 财政年份:2023
- 资助金额:
$ 78.02万 - 项目类别:
Standard Grant