HCC: Medium: Collaborative Research: Improved Control and Sensory Feedback for Neuroprosthetics

HCC:中:合作研究:改进神经假体的控制和感觉反馈

基本信息

  • 批准号:
    1065497
  • 负责人:
  • 金额:
    $ 20.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

This research involves collaboration among investigators at four institutions. Recent advances in motor behavior have uncovered structure in the supporting neural control architecture, including distinctions between feed-forward and feedback control functions and learning. While the neural code has not yet been cracked, much is now known about how its foundations for sensorimotor control differ from those of even the most modern computer-based algorithms. For example, neural function must accommodate transmission and processing delays, so feedback control is subservient to feed-forward and anticipatory control. The nervous system produces exquisite, constantly and widely available predictions concerning body and environment interactions. These predictive models (also called internal models) are constructed by learning the invariants in the mapping from motor commands to sensory feedback (and inverses thereof). The PIs have developed a unique approach based upon readings from a scalp array of EEG electrodes for the construction of algorithms (decoders) which predict motor behavior (control signals) as a weighted sum of the EEG data from all electrodes at multiple time lags. The team has demonstrated two-axis control over a screen cursor using only 10 minutes of EEG and motion training data, a feat far surpassing any brain-computer interface (BCI) available to date. In the current project, the team will build upon this prior work to design and validate noninvasive neural decoders that generate agile control in upper limb prosthetics. To this end, they will investigate neural correlates of brain adaptation to multiple sources of feedback using EEG and functional near infrared spectroscopy (fNIR). An important challenge will be to provide sensory feedback appropriate to contact tasks performed with a prosthesis. Existing BCIs and neuro-prosthetic devices rely at best on vibrotactile feedback and often only on visual feedback. The PIs will add haptic and proprioceptive feedback in concert with a novel adaptation of vibrotactile, skin stretch, and arm squeeze technologies in the prosthesis interface, to provide intuitive control over contact tasks and to strengthen the motor imagery whose neural correlates are processed by the EEG decoder. To establish baseline measures, the team will compare prosthetic performance under direct brain control to myoelectric prosthetic control and direct manual control. Experiments will be performed involving both able-bodied individuals and amputees, in which real-time decoding (EEG) and analysis (EEG/fNIR) of sensorimotor control and cognitive load will be combined. Broader Impacts: This research will revolutionize the control and interface of upper limb prosthetics. The work will lead to a better understanding of the role of sensory feedback in brain-computer interfaces and will lay the foundation for restoration of motor and sensory function for amputees and individuals with neurological disease. The project will create a unique interdisciplinary environment enabling education, training, co-advising and exchange of graduate students, course development, and involvement of undergraduates in research. The PIs will also participate in outreach activities on their various campuses, targeting underrepresented groups in science and engineering.
这项研究涉及四个机构的研究人员之间的合作。运动行为的最新进展揭示了支持神经控制架构的结构,包括前馈和反馈控制功能与学习之间的区别。虽然神经密码尚未被破解,但现在已经知道了很多关于感觉运动控制的基础与最现代的计算机算法的基础有何不同。例如,神经功能必须适应传输和处理延迟,因此反馈控制从属于前馈和预期控制。神经系统产生关于身体和环境相互作用的精确的、持续的和广泛可用的预测。这些预测模型(也称为内部模型)是通过学习从运动命令到感觉反馈(及其逆)的映射中的不变量来构建的。PI开发了一种独特的方法,该方法基于EEG电极头皮阵列的读数,用于构建算法(解码器),该算法(解码器)将运动行为(控制信号)预测为多个时滞处所有电极的EEG数据的加权和。该团队仅使用10分钟的EEG和运动训练数据就展示了对屏幕光标的双轴控制,这一壮举远远超过了迄今为止可用的任何脑机接口(BCI)。在目前的项目中,该团队将在此之前的工作基础上设计和验证非侵入性神经解码器,以在上肢假肢中产生敏捷控制。为此,他们将使用EEG和功能性近红外光谱(fNIR)研究大脑适应多种反馈源的神经相关性。一个重要的挑战将是提供适当的感官反馈,接触与假肢执行的任务。现有的脑机接口和神经假体设备最多依赖于振动触觉反馈,并且通常仅依赖于视觉反馈。PI将增加触觉和本体感受反馈,与假肢接口中的振动触觉、皮肤拉伸和手臂挤压技术的新适应相结合,以提供对接触任务的直观控制,并加强运动想象,其神经相关性由EEG解码器处理。为了建立基线测量,该团队将比较直接大脑控制下的假肢性能,肌电假肢控制和直接手动控制。实验将涉及身体健全的人和截肢者,其中实时解码(EEG)和分析(EEG/fNIR)的感觉运动控制和认知负荷将结合起来。更广泛的影响:这项研究将彻底改变上肢假肢的控制和界面。这项工作将有助于更好地理解感觉反馈在脑机接口中的作用,并为截肢者和神经系统疾病患者恢复运动和感觉功能奠定基础。该项目将创造一个独特的跨学科环境,使教育,培训,共同咨询和研究生交流,课程开发和本科生参与研究。PI还将参加其各个校园的外展活动,针对科学和工程领域代表性不足的群体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcia O'Malley其他文献

Flexible Robotics With Electromagnetic Tracking Improve Safety and Efficiency During In Vitro Endovascular Navigation
  • DOI:
    10.1016/j.jvs.2015.10.031
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Adeline Schwein;Ben Kramer;Ponraj Chinna Durai;Sean Walker;Marcia O'Malley;Alan Lumsden;Jean Bismuth
  • 通讯作者:
    Jean Bismuth
1336 DEVELOPMENT AND VALIDATION OF INANIMATE TASKS FOR ROBOTIC SURGICAL SKILLS ASSESSMENT AND TRAINING
  • DOI:
    10.1016/j.juro.2010.02.942
  • 发表时间:
    2010-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alvin Goh;Rohan Joseph;Marcia O'Malley;Brian Miles;Brian Dunkin
  • 通讯作者:
    Brian Dunkin

Marcia O'Malley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marcia O'Malley', 18)}}的其他基金

REU site: Research at the interface between engineering and medicine (ENGMED)
REU 网站:工程与医学之间的交叉研究 (ENGMED)
  • 批准号:
    2349731
  • 财政年份:
    2024
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Assistive Robotics and Functional Electrical Stimulation: A Synergistic Combination to Reanimate Paralyzed Arms
合作研究:辅助机器人和功能性电刺激:使瘫痪手臂复活的协同组合
  • 批准号:
    2025130
  • 财政年份:
    2021
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
Real-Time Haptic Performance Feedback for Model-Based Surgical Skill Training
用于基于模型的手术技能训练的实时触觉性能反馈
  • 批准号:
    2049063
  • 财政年份:
    2021
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: Intuitive, Wearable Haptic Devices for Communication with Ubiquitous Robots
NRI:FND:COLLAB:用于与无处不在的机器人通信的直观、可穿戴触觉设备
  • 批准号:
    1830146
  • 财政年份:
    2018
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
NRI: Guiding with Touch: Haptic Cueing of Surgical Techniques on Virtual and Robotic Platforms
NRI:触摸引导:虚拟和机器人平台上手术技术的触觉提示
  • 批准号:
    1638073
  • 财政年份:
    2017
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
Doctoral Consortium at the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016)
2016 年 IEEE/RSJ 智能机器人与系统国际会议 (IROS 2016) 博士联盟
  • 批准号:
    1649302
  • 财政年份:
    2016
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
NSF-CPS-Medium: Collaborative Research: Design and development of a cybernetic exoskeleton for hand-wrist rehabilitation through the integration of human passive properties
NSF-CPS-Medium:合作研究:通过整合人类被动特性,设计和开发用于手腕康复的控制论外骨骼
  • 批准号:
    1135916
  • 财政年份:
    2011
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
RI-Small: Cognitive Modeling of Human Motor Skill Acquisition
RI-Small:人类运动技能习得的认知建模
  • 批准号:
    0812569
  • 财政年份:
    2008
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Continuing Grant
CAREER: Shared Control for Skill Transfer in Human-Robot Haptic Interactions
职业:人机触觉交互中技能转移的共享控制
  • 批准号:
    0448341
  • 财政年份:
    2005
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
Hands-on Haptics: Critical Infrastructure for Mechanical Engineering Curriculum Enhancement
动手触觉:机械工程课程增强的关键基础设施
  • 批准号:
    0411235
  • 财政年份:
    2004
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: HCC: Medium: Aligning Robot Representations with Humans
合作研究:HCC:媒介:使机器人表示与人类保持一致
  • 批准号:
    2310757
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: "Unboxing" Haptic Texture Perception: Closing the Loop from Skin Contact Mechanics to Novel Haptic Device
合作研究:HCC:媒介:“拆箱”触觉纹理感知:闭合从皮肤接触力学到新型触觉设备的循环
  • 批准号:
    2312153
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
HCC: Medium: Seamful Design: Prototyping and Evaluating Collaborative Tools for Civic Data
HCC:中:无缝设计:公民数据协作工具的原型设计和评估
  • 批准号:
    2310592
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: Connecting Practitioners to Design: Methods and Tools for Live Participatory Design Fiction
合作研究:HCC:媒介:将从业者与设计联系起来:现场参与式设计小说的方法和工具
  • 批准号:
    2425383
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: Collaborative Upstanding: Leveraging Conversational AI to Cultivate Constructive Upstanders Among Teens
合作研究:HCC:媒介:合作正直:利用对话式人工智能培养青少年的建设性正直者
  • 批准号:
    2313078
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: "Unboxing" Haptic Texture Perception: Closing the Loop from Skin Contact Mechanics to Novel Haptic Device
合作研究:HCC:媒介:“拆箱”触觉纹理感知:闭合从皮肤接触力学到新型触觉设备的循环
  • 批准号:
    2312154
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: "Unboxing" Haptic Texture Perception: Closing the Loop from Skin Contact Mechanics to Novel Haptic Device
合作研究:HCC:媒介:“拆箱”触觉纹理感知:闭合从皮肤接触力学到新型触觉设备的循环
  • 批准号:
    2312155
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: Designing Social Companion Robots for Long-term Interaction
合作研究:HCC:媒介:设计用于长期交互的社交伴侣机器人
  • 批准号:
    2312354
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: Aerodynamic Virtual Human Simulation on Face, Body, and Crowd
合作研究:HCC:媒介:面部、身体和人群的空气动力学虚拟人体模拟
  • 批准号:
    2313075
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: Aerodynamic Virtual Human Simulation on Face, Body, and Crowd
合作研究:HCC:媒介:面部、身体和人群的空气动力学虚拟人体模拟
  • 批准号:
    2313074
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了