Understanding the Active Sites in Selective Alcohol Synthesis with Promoted Rh Catalysts
了解促进 Rh 催化剂选择性醇合成中的活性位点
基本信息
- 批准号:1067020
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1067020KlieOne of the largest societal challenges of our time is the quest for alternative fuel resources that will reduce our current greenhouse-gas emissions and dependence on foreign crude-oil. Of particular interest has been the production of ethanol from cellulosic biomass as a fossil fuel additive/replacement. However, traditional fermentation routes to alcohols are often slow and inefficient, while chemical routes to alcohols are dominated by acid catalyzed processes which generate significant waste. Principal Investigators Robert F. Klie and Randall Meyer from the University of Illinois at Chicago believe an alternative route is the best choice, if it can be made to be an efficient catalytic process. In this proposal, the viability of converting syngas derived from gasified lignin (which is abundant, cheap, and has few competing applications) to ethanol and other alcohols using heterogeneous nano-catalysts will be studied. The key is to harness the unique activity of rhodium for oxygenate production in the Fischer-Tropsch reaction. The PIs will concentrate on developing a fundamental understanding of how efficient synthesis of ethanol can be achieved on promoted rhodium catalysts. Unfortunately, the majority of CO hydrogenation studies using unpromoted Rh catalysts have demonstrated a strong selectivity for methane with a low oxygenate selectivity. A significant improvement with regard to alcohol selectivity is necessary. According to the PIs, the key for improvement of this process lies in unlocking the secrets of catalyst promoters. The PIs are convinced that substantial gains can be made through a detailed investigation of active sites responsible for highly selective and active conversion of syngas into alcohol. If the site can be unambiguously identified then synthesis methods can be developed to properly target its creation, resulting in the highly active and selective catalyst desired. Characterization methods are key to this. However there is an information gap between the extensive information that can be extracted from the many conventional spectroscopic techniques (without the ability to define the location), and what can be obtained from traditional microscopy techniques (without the ability to characterize composition and bonding). In order to circumvent these limitations, the PIs will combine their expertise in two dissimilar areas, chemical engineering and condensed matter physics to form an interdisciplinary research team. The combination of Z-contrast imaging, electron energy loss spectroscopy (EELS), and first-principles modeling using density-functional theory (DFT) can potentially fill this "information gap. The strengths of this effort lie in the PIs ability to synthesize promoted Rh nano-catalysts, characterize their atomic and electronic structures on the atomic scale and correlate these with the selective alcohol formation using ab initio density functional theory (DFT) calculations. To achieve this goal, the PIs will combine their expertise in two dissimilar areas, chemical engineering and condensed matter physics to form an interdisciplinary research team. This research aims at contributing basic materials science knowledge that will aid the understanding and development of new capabilities for potential next generation nano-catalysts. An important feature of this program is the integration of research and education through the training of students in both experimental and theoretical materials science. This will be of great value to the graduate students in the groups. In addition the school and the PIs are well-integrated into very strong minority and STEM programs which are a feature of the broader educational impacts of this project.
我们这个时代最大的社会挑战之一是寻求替代燃料资源,以减少我们目前的温室气体排放和对外国原油的依赖。特别感兴趣的是从纤维素生物质生产乙醇作为化石燃料添加剂/替代品。然而,传统的醇发酵途径通常是缓慢和低效的,而醇的化学途径主要是酸催化的过程,产生大量的废物。首席研究员罗伯特·F。来自伊利诺伊大学芝加哥分校的Klie和Randall Meyer认为,如果能够使其成为一种有效的催化过程,那么替代路线是最好的选择。在该提案中,将研究使用非均相纳米催化剂将来自气化木质素(其丰富、便宜且几乎没有竞争应用)的合成气转化为乙醇和其他醇的可行性。关键是利用铑在费托反应中的独特活性来生产铑。PI将集中于发展如何有效地合成乙醇的基本理解可以实现促进铑催化剂。不幸的是,大多数使用未促进的Rh催化剂的CO加氢研究已经证明了对甲烷的强选择性和低的选择性。在醇选择性方面的显著改进是必要的。据PI称,改进这一过程的关键在于解开催化剂促进剂的秘密。 PI相信,通过对负责将合成气高选择性和活性转化为醇的活性位点进行详细研究,可以获得实质性的收益。如果该位点可以明确识别,则可以开发合成方法以适当地靶向其产生,从而产生所需的高活性和选择性催化剂。表征方法是关键。然而,在可以从许多常规光谱技术(没有能力定义位置)提取的大量信息与可以从传统显微镜技术(没有能力表征成分和键合)获得的信息之间存在信息差距。为了规避这些限制,PI将联合收割机结合他们在两个不同领域的专业知识,化学工程和凝聚态物理,形成一个跨学科的研究团队。Z衬度成像、电子能量损失谱(EELS)和使用密度泛函理论(DFT)的第一性原理建模的组合可以潜在地填补这一“信息空白”。这项工作的优势在于PI能够合成促进Rh纳米催化剂,在原子尺度上表征其原子和电子结构,并使用从头算密度泛函理论(DFT)计算将这些与选择性醇形成相关。为了实现这一目标,PI将联合收割机结合他们在两个不同领域的专业知识,化学工程和凝聚态物理,形成一个跨学科的研究团队。这项研究旨在贡献基础材料科学知识,这将有助于理解和开发潜在的下一代纳米催化剂的新能力。该计划的一个重要特点是通过对学生进行实验和理论材料科学培训,将研究和教育相结合。这将是非常有价值的研究生群体。此外,学校和PI很好地融入了非常强大的少数民族和STEM计划,这是该项目更广泛的教育影响的一个特点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Klie其他文献
Performance assessment of a slat gamma camera collimator for 511 keV imaging
用于 511 keV 成像的板条伽马相机准直器的性能评估
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Alan J Britten;Robert Klie - 通讯作者:
Robert Klie
Robert Klie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Klie', 18)}}的其他基金
Discovering Novel Properties in Few-Layer MXenes Using Analytical, In-Situ Scanning Transmission Electron Microscopy
使用分析原位扫描透射电子显微镜发现少层 MXene 的新特性
- 批准号:
2309396 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Single-particle electrochemistry to identify fundamental barriers to magnesium ion intercalation in transition metal oxides
单粒子电化学确定过渡金属氧化物中镁离子嵌入的基本障碍
- 批准号:
2312359 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MRI: Acquisition of a Monochromated, Magnetic-Field-Free, Atomic-Resolution Scanning Transmission Electron Microscope Enabling Multidisciplinary Research and Education
MRI:获取单色、无磁场、原子分辨率扫描透射电子显微镜,实现多学科研究和教育
- 批准号:
2215976 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
A combined theory-experiment study of electronic, magnetic and thermal properties of complex oxide nano-structures
复合氧化物纳米结构电、磁、热性能的理论与实验相结合研究
- 批准号:
1831406 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MRI: Acquisition of a Dual-EELS Gatan Quantum Imaging Spectrometer to Upgrade the JEOL ARM200CF at UIC.
MRI:购买双 EELS Gatan 量子成像光谱仪以升级 UIC 的 JEOL ARM200CF。
- 批准号:
1626065 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Controlling Defects in Transition Metal Oxide Thin Films
控制过渡金属氧化物薄膜中的缺陷
- 批准号:
1408427 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
MRI-R2: Acquisition of an Aberration-Corrected Scanning Transmission Electron Microscope for Multidisciplinary Research and Education at UIC
MRI-R2:为 UIC 的多学科研究和教育购买像差校正扫描透射电子显微镜
- 批准号:
0959470 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Atomic-Resolution Study of Electron-Spin Interaction in Strongly-Correlated Mixed-Valence Cobalt Oxide Nano-Structures
职业:强相关混合价氧化钴纳米结构中电子自旋相互作用的原子分辨率研究
- 批准号:
0846784 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
光—电驱动下的AIE-active手性高分子CPL液晶器件研究
- 批准号:92156014
- 批准年份:2021
- 资助金额:70.00 万元
- 项目类别:国际(地区)合作与交流项目
光-电驱动下的AIE-active手性高分子CPL液晶器件研究
- 批准号:
- 批准年份:2021
- 资助金额:70 万元
- 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Biomimetic Swarm of Active Colloids with Off-Center Interaction Sites
职业:具有偏离中心相互作用位点的仿生活性胶体群
- 批准号:
2238915 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant