Some Questions in Algebraic Combinatorics
代数组合学的一些问题
基本信息
- 批准号:1068178
- 负责人:
- 金额:$ 3.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
John Stembridge provided a planar network interpretation for the pfaffian of a skew-symmetric matrix. This gave the original motivation for Thomas Lam and the PI to introduce and study the skew version of total positivity. Further investigation in this direction, and in particular the relation of skew total positivity to the theory of total positivity developed by George Lusztig, is the subject of the first project. The second project grew out of an attempt to reinterpret the often used standard bases of the coordinate ring of Grassmanians, and to find different kinds of bases occurring naturally. The question is closely related to the question of triangulating the cone of Gelfand-Tsetlin patterns, which motivated David Speyer and the PI to introduce the notion of driving rules as a way to locally determine the triangulation. Properties of the simplicial complexes and the bases which arise are the subject of the investigation. The third project deals with K-homology of Grassmanian, studied so far to a smaller extend than the dual notion of K-theory. The first step in this direction was taken by Thomas Lam and the PI who introduced dual stable Grothendieck polynomials as representatives of Schubert classes in the K-homology ring. Further questions to be studied include the K-theoretic version of the Robinson-Schensted correspondence, K-homology of complete flag varieties and more.The unifying theme of all three projects is the study of nice varieties, such as Grassmanians and more general flag varieties. A Grassmanian as the variety of all k-dimensional subspaces of an n-dimensional space. An old and yet active research area is Schubert calculus, which - very roughly - studies how subspaces of a space intersect. A simple example would be the following question: in a three-dimensional space four lines in generic position are chosen. What is the number of lines that intersect all four of them? Schubert calculus was recently enriched by the work of George Lusztig, who defined and studied a special part of flag varieties, called totally the positive part. Real numbers naturally come with a notion of positive and negative, and when we consider flag varieties over real numbers there is a way to identify a positive part in them. The study of the totally positive part has lead to a number of beautiful recent developments.
John Stembridge为斜对称矩阵的pfaffian提供了一个平面网络解释。这给了林郑月娥和公安部引入和研究完全积极的歪斜版本的最初动机。在这个方向上的进一步研究,特别是由George Lusztig发展的倾斜全正性与全正性理论的关系,是第一个项目的主题。第二个项目是试图重新解释格拉斯马尼亚坐标环中经常使用的标准碱基,并寻找自然发生的不同类型的碱基。这个问题与Gelfand-Tsetlin模式的锥体三角测量问题密切相关,这促使David Speyer和PI引入了驾驶规则的概念,作为局部确定三角测量的一种方式。单纯复形的性质和由此产生的基是研究的主题。第三个项目涉及Grassmanian的K-同调,到目前为止研究的范围比K-理论的对偶概念要小。这个方向的第一步是Thomas Lam和PI在K-同调环上引入了对偶稳定的Grothendieck多项式作为Schubert类的代表。需要进一步研究的问题包括Robinson-Schensted对应的K-理论版本、完全旗帜品种的K-同调以及更多。所有三个项目的统一主题都是研究更好的品种,如Grassmanian和更一般的旗帜品种。作为n维空间中所有k维子空间的簇的Grassmanian。舒伯特微积分是一个古老而活跃的研究领域,它非常粗略地研究空间的子空间如何相交。一个简单的例子是下面的问题:在三维空间中,选择了四条处于通用位置的线。这四条线都相交的线数是多少?最近,George Lusztig的工作丰富了舒伯特微积分,他定义并研究了旗帜变种的一个特殊部分,完全称为正部分。实数自然伴随着正负的概念,当我们考虑旗帜的变化而不是实数时,就有一种方法来识别它们中的积极部分。对完全积极的部分的研究已经导致了一些美丽的最近的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pavlo Pylyavskyy其他文献
Crystals and total positivity on orientable surfaces
- DOI:
10.1007/s00029-012-0094-2 - 发表时间:
2012-05-26 - 期刊:
- 影响因子:1.200
- 作者:
Thomas Lam;Pavlo Pylyavskyy - 通讯作者:
Pavlo Pylyavskyy
Cyclotomic factors of the descent set polynomial
- DOI:
10.1016/j.jcta.2008.05.011 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Denis Chebikin;Richard Ehrenborg;Pavlo Pylyavskyy;Margaret Readdy - 通讯作者:
Margaret Readdy
Cell transfer and monomial positivity
- DOI:
10.1007/s10801-006-0054-z - 发表时间:
2007-01-09 - 期刊:
- 影响因子:0.900
- 作者:
Thomas Lam;Pavlo Pylyavskyy - 通讯作者:
Pavlo Pylyavskyy
Robinson-Schensted correspondence for unit interval orders
单位间隔阶数的 Robinson-Schensted 对应关系
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Dongkwan Kim;Pavlo Pylyavskyy - 通讯作者:
Pavlo Pylyavskyy
Pavlo Pylyavskyy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pavlo Pylyavskyy', 18)}}的其他基金
Cluster Algebras, the Ising Model, and Affine Kazhdan-Lusztig Cells
簇代数、Ising 模型和仿射 Kazhdan-Lusztig 单元
- 批准号:
1949896 - 财政年份:2020
- 资助金额:
$ 3.29万 - 项目类别:
Continuing Grant
CAREER: Algebraic Combinatorics and URE
职业:代数组合和 URE
- 批准号:
1351590 - 财政年份:2014
- 资助金额:
$ 3.29万 - 项目类别:
Continuing Grant
Some questions in total positivity and cluster algebras
总正性和簇代数的一些问题
- 批准号:
1068169 - 财政年份:2011
- 资助金额:
$ 3.29万 - 项目类别:
Standard Grant
Some Questions in Algebraic Combinatorics
代数组合学的一些问题
- 批准号:
0757165 - 财政年份:2008
- 资助金额:
$ 3.29万 - 项目类别:
Standard Grant
相似海外基金
Arithmetic Questions in the Theory of Linear Algebraic Groups
线性代数群理论中的算术问题
- 批准号:
2154408 - 财政年份:2022
- 资助金额:
$ 3.29万 - 项目类别:
Standard Grant
Questions in Algebraic and Geometric Combinatorics
代数和几何组合问题
- 批准号:
2153897 - 财政年份:2022
- 资助金额:
$ 3.29万 - 项目类别:
Standard Grant
Fundamental Questions in Theory of Algebraic and Kac-Moody Groups
代数和 Kac-Moody 群理论的基本问题
- 批准号:
1789943 - 财政年份:2016
- 资助金额:
$ 3.29万 - 项目类别:
Studentship
Questions on Algebraic Operads and Related Structures
代数运算及相关结构问题
- 批准号:
1501001 - 财政年份:2015
- 资助金额:
$ 3.29万 - 项目类别:
Standard Grant
Syzygies, experiments in algebraic geometry and unirationality questions for moduli spaces
Syzygies、代数几何实验和模空间的无理性问题
- 批准号:
171229018 - 财政年份:2010
- 资助金额:
$ 3.29万 - 项目类别:
Priority Programmes
Some Questions in Algebraic Combinatorics
代数组合学的一些问题
- 批准号:
0757165 - 财政年份:2008
- 资助金额:
$ 3.29万 - 项目类别:
Standard Grant
U.S.-Poland: Ulam's Problem and Related Questions in Algebraic and Geometric Topology
美国-波兰:乌拉姆问题及代数和几何拓扑中的相关问题
- 批准号:
9808925 - 财政年份:1998
- 资助金额:
$ 3.29万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Questions in Algebraic Topology
数学科学:代数拓扑中的几何问题
- 批准号:
8996197 - 财政年份:1989
- 资助金额:
$ 3.29万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Questions in Algebraic Topology
数学科学:代数拓扑中的几何问题
- 批准号:
8901879 - 财政年份:1989
- 资助金额:
$ 3.29万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Questions in Algebraic Topology
数学科学:代数拓扑中的几何问题
- 批准号:
8701539 - 财政年份:1987
- 资助金额:
$ 3.29万 - 项目类别:
Standard Grant














{{item.name}}会员




