Bessel Models and the Transfer of Siegel Cusp Forms of Degree 2
贝塞尔模型和 2 次西格尔尖端形式的传递
基本信息
- 批准号:1100541
- 负责人:
- 金额:$ 28.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A proposal is made for a detailed study of Bessel models for the group GSp(4) over a nonarchimedean local field, and the application of the results to analytic properties of L-functions, the non-generic transfer of Siegel modular forms to GL(4), and special values of L-functions. The importance of Whittaker models in the theory of Automorphic Representations is well known. For certain groups such as GSp(4) Bessel models can serve as a substitute for those representations that have no Whittaker model. While general facts for Bessel models are known, such as the uniqueness of Bessel models, certain important questions remain unanswered and prevent a widespread deployment of these models. Amongst the unknown facts are the determination of test vectors for a given representation and a given Bessel model, and the calculation of explicit Bessel functions. This research will close these knowledge gaps, allowing for several new applications of Bessel models.The activity of this proposal will promote teaching, training, and learning via the inclusion of graduate students as participants in the proposed research. The activity of this proposal will broaden the participation of under-represented groups. The PI and the Co-PI plan to continue their close contacts with the OU McNair Scholars Programs well as the Sooner Traditions Scholars program of the University of Oklahoma. These programs are comprised of undergraduate students which are either first-generation and low-income, or from underrepresented groups, or from traditionally disadvantaged high-schools in the Oklahoma City and Tulsa area. The activity of this proposal will enhance infrastructure for research and education. As part of the Automorphic Forms group at the University of Oklahoma, the PI and the Co-PI have participated, and will continue to participate, in a number of scientific activities involving researchers and students from other institutions. Amongst these activities are joint seminars with neighboring universities and conferences with a largely regional appeal. Other activities will include short- and medium-term visits from researchers from other parts of the country and also from overseas. Finally, the activity of the proposed research will lead, within the framework of the Automorphic Forms group of the University of Oklahoma, to the creation of a website with resources for students and researchers in the area of Automorphic Forms. Amongst other things, the web site will contain a comprehensive list of activities in Automorphic Forms.
本文提出了一个关于非阿基米德局部域上群GSp(4)的Bessel模型的详细研究的建议,并将研究结果应用于L-函数的解析性质、Siegel模形式到GL(4)的非一般转移以及L-函数的特殊值。Whittaker模型在自守表示理论中的重要性是众所周知的。对于某些群体,如GSp(4),贝塞尔模型可以作为没有惠特克模型的那些表示的替代品。虽然贝塞尔模型的一般事实是已知的,如贝塞尔模型的独特性,某些重要的问题仍然没有答案,并阻止这些模型的广泛部署。在未知的事实是一个给定的表示和一个给定的贝塞尔模型的测试向量的确定,并计算显式贝塞尔函数。这项研究将缩小这些知识差距,允许贝塞尔模型的几个新的应用程序。这项建议的活动将促进教学,培训和学习,通过纳入研究生作为参与者在拟议的研究。这项建议的活动将扩大代表性不足群体的参与。PI和Co-PI计划继续与俄克拉荷马州大学的McNair学者计划和Sooner Scholars Scholars计划保持密切联系。这些项目由本科生组成,他们要么是第一代低收入者,要么来自代表性不足的群体,要么来自俄克拉荷马州市和塔尔萨地区传统上处于不利地位的高中。这项建议的活动将加强研究和教育的基础设施。作为俄克拉荷马州大学自守形式小组的一部分,PI和Co-PI已经参加并将继续参加一些涉及其他机构研究人员和学生的科学活动。在这些活动中,有与邻近大学的联合研讨会和具有很大区域吸引力的会议。其他活动将包括来自该国其他地区和海外的研究人员的短期和中期访问。最后,拟议的研究活动将导致,在俄克拉荷马州大学自守形式组的框架内,创建一个网站,为自守形式领域的学生和研究人员提供资源。除其他事项外,该网站将载有一份以自守形式开展的活动的综合清单。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ameya Pitale其他文献
Jacobi Maaß forms
雅可比·马斯形式
- DOI:
10.1007/s12188-008-0013-9 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Ameya Pitale - 通讯作者:
Ameya Pitale
The special values of the standard $L$-functions for $\mathrm{GSp}_{2n} \times \mathrm{GL}_1$
标准 $L$ 函数的特殊值 $mathrm{GSp}_{2n} imes mathrm{GL}_1$
- DOI:
10.2140/pjm.2022.316.81 - 发表时间:
2021 - 期刊:
- 影响因子:0.6
- 作者:
Shuji Horinaga;Ameya Pitale;A. Saha;Ralf Schmidt - 通讯作者:
Ralf Schmidt
An explicit lifting construction of CAP forms on O(1,5)
O(1,5) 上 CAP 形式的显式提升构造
- DOI:
10.1142/s1793042123500653 - 发表时间:
2022 - 期刊:
- 影响因子:0.7
- 作者:
Hiroyuki Narita;Ameya Pitale;Siddhesh Wagh - 通讯作者:
Siddhesh Wagh
Irreducibility criteria for local and global representations
局部和全局表示的不可约性标准
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Hiroaki Narita;Ameya Pitale;Ralf Schmidt - 通讯作者:
Ralf Schmidt
Bessel models for GSp(4): Siegel vectors of square-free level
GSP(4) 的贝塞尔模型:无平方水平的西格尔向量
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Ameya Pitale;Ralf Schmidt - 通讯作者:
Ralf Schmidt
Ameya Pitale的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ameya Pitale', 18)}}的其他基金
Texas-Oklahoma Representations and Automorphic Forms Conference Series
德克萨斯州-俄克拉荷马州表示和自同构会议系列
- 批准号:
1601105 - 财政年份:2016
- 资助金额:
$ 28.51万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Learn, transfer, generate: Developing novel deep learning models for enhancing robustness and accuracy of small-scale single-cell RNA sequencing studies
学习、转移、生成:开发新颖的深度学习模型,以增强小规模单细胞 RNA 测序研究的稳健性和准确性
- 批准号:
10535708 - 财政年份:2023
- 资助金额:
$ 28.51万 - 项目类别:
Development of climate-sensitive tree growth models based on population transfer functions
基于种群转移函数的气候敏感树木生长模型的开发
- 批准号:
559879-2021 - 财政年份:2022
- 资助金额:
$ 28.51万 - 项目类别:
Postgraduate Scholarships - Doctoral
Exploring Signal Detection via Multitaper Transfer Function Estimates: Extension to a Generalized Framework of Time Series Regression Models and Applications
通过多锥度传递函数估计探索信号检测:扩展到时间序列回归模型和应用的通用框架
- 批准号:
570341-2022 - 财政年份:2022
- 资助金额:
$ 28.51万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Image Quality Transfer Using Generative Models
使用生成模型进行图像质量传输
- 批准号:
2724620 - 财政年份:2022
- 资助金额:
$ 28.51万 - 项目类别:
Studentship
MCA: Genomic algorithms and statistical models for gene transfer in naturally transformable bacteria
MCA:自然转化细菌中基因转移的基因组算法和统计模型
- 批准号:
2221039 - 财政年份:2022
- 资助金额:
$ 28.51万 - 项目类别:
Standard Grant
Transfer learning of pharmacogenomic information across disease types and preclinical models for drug sensitivity prediction.
跨疾病类型的药物基因组信息的迁移学习和用于药物敏感性预测的临床前模型。
- 批准号:
EP/V029045/2 - 财政年份:2022
- 资助金额:
$ 28.51万 - 项目类别:
Research Grant
Development of Advanced Numerical Models for Two-Phase Heat and Mass Transfer Processes in Energy Systems
能源系统中两相传热传质过程的先进数值模型的开发
- 批准号:
RGPIN-2018-05354 - 财政年份:2022
- 资助金额:
$ 28.51万 - 项目类别:
Discovery Grants Program - Individual
Integration of building physics models and machine learning models through transfer learning and application to building operations
通过迁移学习将建筑物理模型和机器学习模型集成并应用于建筑运营
- 批准号:
22K04436 - 财政年份:2022
- 资助金额:
$ 28.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of climate-sensitive tree growth models based on population transfer functions
基于种群转移函数的气候敏感树木生长模型的开发
- 批准号:
559879-2021 - 财政年份:2021
- 资助金额:
$ 28.51万 - 项目类别:
Postgraduate Scholarships - Doctoral
Transfer learning of pharmacogenomic information across disease types and preclinical models for drug sensitivity prediction.
跨疾病类型的药物基因组信息的迁移学习和用于药物敏感性预测的临床前模型。
- 批准号:
EP/V029045/1 - 财政年份:2021
- 资助金额:
$ 28.51万 - 项目类别:
Research Grant














{{item.name}}会员




