K-theory, Dynamics, and Intersection
K 理论、动力学和交集
基本信息
- 批准号:1104355
- 负责人:
- 金额:$ 13.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-15 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI proposes two projects that interface algebraic and differential topology and K-theory. The first of these aims to strengthen the relationship between torsion invariants and the counting of closed orbits in dynamical systems. The goal here is to generalize Milnor's equation relating Reidemeister torsion to the Lefschetz zeta function. One aspect of the project will lead to a version of this equation which holds for families of dynamical systems that will relate a higher K-theory invariant to an invariant counting periodic orbits. The main tools will come from Waldhausen's work on algebraic K-theory and the functor TR, which is the topologists' version of the topological de Rham-Witt complex. The second project will study multi-relative version of intersection theory which will give insights beyond the metastable range. We will study obstructions to deforming a map from a manifold into another one off of a finite collection of pair-wise disjoint submanifolds, assuming that the map can be deformed off of the union of any proper sub-collection. The obstruction will live in a direct sum of bordism groups. In a certain range, the obstruction will capture the entire story. Applications of this theory will be given in embedding theory and also in the theory of link homotopy.The proposed research is largely about "manifolds" which are topological spaces that satisfy a certain homogeneity property. Locally speaking, all manifolds are alike in that at any point one sees a copy of Euclidean space. It is the global structure of manifolds that makes them interesting objects of study. Typically, algebraic topologists study manifolds by assigning certain algebraic quantities, called "invariants," to them, which measure global topological structure. Manifolds having different invariants can then be distinguished from one another. Manifolds arise naturally in physics, chemistry and biology as spaces of solutions of a suitably "nice" set of algebraic equations modeling the scientific object of study (space-time, atoms, dynamical systems, etc.) . Manifolds play a central role in mathematics. It is often the case that mathematical questions about manifolds can be formulated in terms of parametrized families of functions between spaces associated with manifolds. Homotopy theory is a subject designed to tackle questions about such families of functions. K-theory is an algebraic theory which is a receptacle for invariants of manifolds. The PI will research certain kinds of manifold questions which can be analyzed using homotopy theory and K-theory.
PI提出了两个方案,将代数和微分拓扑学与K-理论相结合。第一个目的是加强动力学系统中挠率不变量与闭合轨道计数之间的关系。这里的目的是将米尔诺方程推广到Lefschetz Zeta函数,该方程将Reidemister挠率与Lefschetz Zeta函数联系起来。该项目的一个方面将导致这个方程的一个版本,它适用于动力学系统族,它将把更高的K-理论不变量与不变计数周期轨道联系起来。主要工具将来自Waldhausen在代数K理论和函子tr方面的工作,函子tr是拓扑学家版本的拓扑德罗姆-维特复形。第二个项目将研究多相对版本的交集理论,这将给出亚稳态范围之外的见解。我们将研究从一个流形到有限个成对不相交子流形集合的映射变形的障碍,假设映射可以从任何真子集合的并集变形出来。障碍将直接存在于博尔德主义团体的总和。在一定范围内,障碍物将捕捉到整个故事。这一理论将在嵌入理论和链同伦理论中得到应用。所提出的研究主要是关于流形,即满足一定齐性性质的拓扑空间。局部地讲,所有流形都是相似的,因为在任何一点都可以看到欧几里得空间的副本。正是流形的全球结构使它们成为有趣的研究对象。通常,代数拓扑学家通过给流形分配某些代数量来研究流形,这些代数量被称为“不变量”,用来测量全局拓扑结构。然后,具有不同不变量的流形可以彼此区分。流形自然而然地出现在物理、化学和生物学中,作为一组适当的、对科学研究对象(空间-时间、原子、动力系统等)建模的代数方程的解的空间。流形在数学中起着核心作用。通常情况下,关于流形的数学问题可以用与流形相关的空间之间的函数的参数化族来表示。同伦论是一门旨在解决关于这类函数族的问题的学科。K-理论是一种接受流形不变量的代数理论。PI将研究某些类型的流形问题,这些问题可以用同伦理论和K理论来分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Klein其他文献
From set relations to belief function relations
- DOI:
10.1016/j.ijar.2019.04.002 - 发表时间:
2019-07-01 - 期刊:
- 影响因子:
- 作者:
Sébastien Destercke;Frédéric Pichon;John Klein - 通讯作者:
John Klein
Application-Specific Evaluation of No SQL Databases
无 SQL 数据库的特定于应用程序的评估
- DOI:
10.1109/bigdatacongress.2015.83 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
John Klein;I. Gorton;Neil A. Ernst;P. Donohoe;Kim Pham;Chrisjan Matser - 通讯作者:
Chrisjan Matser
State space partitioning based on constrained spectral clustering for block particle filtering
基于约束谱聚类的块粒子滤波状态空间划分
- DOI:
10.48550/arxiv.2203.03475 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Rui Min;C. Garnier;Françcois Septier;John Klein - 通讯作者:
John Klein
A Compound Arm Approach to Digital Construction
数字化建设的复合臂方法
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Steven J. Keating;N. Spielberg;John Klein;N. Oxman - 通讯作者:
N. Oxman
Bruce Williams
- DOI:
10.1007/s10711-010-9510-y - 发表时间:
2010-06-08 - 期刊:
- 影响因子:0.500
- 作者:
Bill Dwyer;John Klein;Shmuel Weinberger - 通讯作者:
Shmuel Weinberger
John Klein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Klein', 18)}}的其他基金
SBIR Phase II: A Digital Design-Delivery System for the Large-scale Deployment of Mass Timber Building Technologies
SBIR 第二阶段:用于大规模部署大型木结构建筑技术的数字设计交付系统
- 批准号:
2111626 - 财政年份:2021
- 资助金额:
$ 13.32万 - 项目类别:
Cooperative Agreement
SBIR Phase I: A Digital Design-Delivery System for the Large-scale Deployment of Mass Timber Building Technologies
SBIR 第一阶段:用于大规模部署大型木结构建筑技术的数字设计交付系统
- 批准号:
1938111 - 财政年份:2019
- 资助金额:
$ 13.32万 - 项目类别:
Standard Grant
Homotopical Methods in Manifold Theory
流形理论中的同伦方法
- 批准号:
0803363 - 财政年份:2008
- 资助金额:
$ 13.32万 - 项目类别:
Standard Grant
Embeddings, Intersections and Symmetries
嵌入、交集和对称性
- 批准号:
0503658 - 财政年份:2005
- 资助金额:
$ 13.32万 - 项目类别:
Standard Grant
Mathematical Sciences: International Workshop on "Survival Analysis and Related Topics", June 1991
数学科学:“生存分析及相关主题”国际研讨会,1991 年 6 月
- 批准号:
9018052 - 财政年份:1991
- 资助金额:
$ 13.32万 - 项目类别:
Standard Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 13.32万 - 项目类别:
EU-Funded
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
- 批准号:
10090067 - 财政年份:2024
- 资助金额:
$ 13.32万 - 项目类别:
Collaborative R&D
Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
- 批准号:
DP240100168 - 财政年份:2024
- 资助金额:
$ 13.32万 - 项目类别:
Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
- 批准号:
DP240100465 - 财政年份:2024
- 资助金额:
$ 13.32万 - 项目类别:
Discovery Projects
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
- 批准号:
DE240100755 - 财政年份:2024
- 资助金额:
$ 13.32万 - 项目类别:
Discovery Early Career Researcher Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
- 批准号:
EP/Y03614X/1 - 财政年份:2024
- 资助金额:
$ 13.32万 - 项目类别:
Research Grant
Human enteric nervous system progenitor dynamics during development and disease
人类肠神经系统祖细胞在发育和疾病过程中的动态
- 批准号:
MR/Y013476/1 - 财政年份:2024
- 资助金额:
$ 13.32万 - 项目类别:
Research Grant
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
- 批准号:
BB/Y004531/1 - 财政年份:2024
- 资助金额:
$ 13.32万 - 项目类别:
Research Grant
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
- 批准号:
EP/X031934/1 - 财政年份:2024
- 资助金额:
$ 13.32万 - 项目类别:
Research Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
- 批准号:
EP/X040852/1 - 财政年份:2024
- 资助金额:
$ 13.32万 - 项目类别:
Fellowship