Geometric aspects of hydrodynamic blowup

流体动力学爆炸的几何方面

基本信息

  • 批准号:
    1105660
  • 负责人:
  • 金额:
    $ 12.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

This project involves using a new characterization of blowup for the three-dimensional Euler equations for an ideal fluid, in terms of the Riemannian geometry of the group of volume-preserving diffeomorphisms (as originally pioneered by Arnold). The criterion is that geodesics in this group, which represent Lagrangian motions of fluids, fail to minimize length on ever-shorter intervals as the blowup time is reached. This condition can be understood in terms of positive blowup of the sectional curvature, as well as in terms of the weak geometry of the space of volume-preserving maps. We propose to investigate the geometry using three simpler approximate geometries in order to try to rule out blowup geometrically.This project involves studying the Euler equations, which describe the motion of a fluid in three dimensions. The problem of showing that these equations can be used to describe the fluid forever, even if the motion becomes very turbulent, has been studied for hundreds of years but remains unsolved. We propose a new approach which involves viewing the fluid geometrically, as a shortest path in an infinite-dimensional curved space (in much the same way that an airplane traces out a length-minimizing path on the two-dimensional curved surface of the earth). Although this geometric picture of a fluid has been known since the 1960s, only recently has it been possible to relate turbulent motion to path length in this curved space, and the project is to use this approach to help decide whether the equations are always valid or whether they have to "blow up" when the fluid motion gets too complicated.
这个项目涉及到使用一种新的特性来描述理想流体的三维欧拉方程的放大,根据黎曼几何的保体积微分同态群(最初是由Arnold首创的)。这组测地线代表流体的拉格朗日运动,当达到爆破时间时,测地线不能在更短的间隔内使长度最小化。这个条件可以用截面曲率的正膨胀来理解,也可以用保体映射空间的弱几何来理解。我们建议用三种更简单的近似几何来研究几何,以便尝试在几何上排除爆炸。这个项目包括研究欧拉方程,它描述了流体在三维空间中的运动。证明这些方程可以永远用来描述流体的问题,即使运动变得非常动荡,已经研究了数百年,但仍然没有解决。我们提出了一种新的方法,它包括从几何上观察流体,作为无限维弯曲空间中的最短路径(与飞机在地球的二维曲面上追踪长度最小路径的方式非常相似)。尽管这种流体的几何图形早在20世纪60年代就被人们所知,但直到最近才有可能将湍流运动与弯曲空间中的路径长度联系起来,该项目是利用这种方法来帮助确定这些方程是否总是有效,或者当流体运动变得过于复杂时,它们是否必须“爆炸”。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Preston其他文献

TCT-370 Histopathological validation of coronary plaque classification using virtual histology intravascular ultrasound and optical coherence tomography
  • DOI:
    10.1016/j.jacc.2014.07.418
  • 发表时间:
    2014-09-16
  • 期刊:
  • 影响因子:
  • 作者:
    Adam J. Brown;Patrick A. Calvert;Stephen Preston;Stephen P. Hoole;Nick E. West;Martin J. Goddard;Martin R. Bennett
  • 通讯作者:
    Martin R. Bennett
Towards an understanding of the painful total knee: what is the role of patient biology?
了解全膝关节疼痛:患者生物学的作用是什么?
26 Implementation of a neoadjuvant lung cancer treatment pathway in a regional tertiary centre
  • DOI:
    10.1016/j.lungcan.2024.107587
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Laura Succony;Maureen King;Stephen Preston;David Meek;Lavinia McGee;Martin Goddard;Giuseppe Aresu;Robert Rintoul;Nicola Thompson;David Gilligan
  • 通讯作者:
    David Gilligan

Stephen Preston的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Preston', 18)}}的其他基金

Thematic Program on Geometric Analysis and Spectral Theory
几何分析与谱理论专题课程
  • 批准号:
    1647230
  • 财政年份:
    2016
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Standard Grant
Thematic Program on Geometric Analysis and Spectral Theory
几何分析与谱理论专题课程
  • 批准号:
    1157293
  • 财政年份:
    2012
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Standard Grant

相似国自然基金

基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
  • 批准号:
    60503032
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
  • 批准号:
    EP/Y030249/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Research Grant
Combinational, Structural and algorithmic aspects of temporal graphs
时间图的组合、结构和算法方面
  • 批准号:
    2903280
  • 财政年份:
    2024
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Studentship
CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
  • 批准号:
    2340195
  • 财政年份:
    2024
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Continuing Grant
Aspects and Functions of Legal Principles in Civil Law Interpretation
民法解释中法律原则的方面和作用
  • 批准号:
    23K01192
  • 财政年份:
    2023
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
  • 批准号:
    2882187
  • 财政年份:
    2023
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Studentship
Various Aspects of the Mechanistic Views of Nature in the Late 19th Century
19世纪末自然机械论的各个方面
  • 批准号:
    23K00265
  • 财政年份:
    2023
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Aspects of Polish group dynamics
波兰团体动态的各个方面
  • 批准号:
    2246873
  • 财政年份:
    2023
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Continuing Grant
Conference: Human, Engineering, and Scientific Aspects of Disease Transmission in Natural and Built Environments
会议:自然和建筑环境中疾病传播的人类、工程和科学方面
  • 批准号:
    2332366
  • 财政年份:
    2023
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Standard Grant
AF: Small: Theoretical Aspects of Repetition-Aware Text Compression and Indexing
AF:小:重复感知文本压缩和索引的理论方面
  • 批准号:
    2315822
  • 财政年份:
    2023
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    $ 12.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了