Statistical Inference for Stochastic Processes, Analysis of MCMC Algorithms and Applications to Climate Science
随机过程的统计推断、MCMC 算法分析及其在气候科学中的应用
基本信息
- 批准号:1107070
- 负责人:
- 金额:$ 14.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal consists of three complementary themes with a particular research focus on statistical inference for data arising from dynamical systems, partial differential equations (often representing physical phenomena) and diffusions. The research questions in the proposal are motivated by the genuine need for novel statistical inference in these areas where the data is naturally high dimensional. A highlight of this proposal is the interdisciplinary nature of the problems which requires the integration of techniques from a wide spectrum of fields in applied mathematics, probability and statistics. The main themes are 1) stability of Markov Chain Monte Carlo algorithms in high dimensions, 2) statistical inference for inverse problems from diffusions and dynamical systems, and 3) applications to climate science and temperature prediction. The first two themes aim at developing methods and improving the theoretical understanding of statistical inference procedures whilst the third will directly implement the insights gained from the first two to answer a few concrete relevant and open problems in climate science. The main thread connecting the above three themes of the research is the development and theoretical analysis of novel and efficient Markov Chain Monte Carlo techniques.Advances in technology and computing power have made many historically intractable problems in statistics amenable to routine implementation using certain probabilistic algorithms. Despite two decades of intense research, our theoretical understanding of the behavior of these complex algorithms in high dimensions is still primitive. The PI proposes to study these algorithms and quantify their behavior in high dimensions, and apply them to solve concrete problems in climate science.
该提案由三个互补的主题组成,特别关注动力系统,偏微分方程(通常代表物理现象)和扩散所产生的数据的统计推断。该提案中的研究问题的动机是在这些数据自然是高维的领域中真正需要新颖的统计推断。这一建议的一个亮点是跨学科性质的问题,需要从应用数学,概率和统计领域的广泛技术的整合。主要的主题是1)马尔可夫链蒙特卡罗算法在高维的稳定性,2)从扩散和动力系统的反问题的统计推断,和3)应用于气候科学和温度预测。前两个主题旨在开发方法和提高对统计推断程序的理论理解,而第三个主题将直接实施前两个主题的见解,以回答气候科学中一些具体的相关和开放的问题。连接上述三个主题的研究的主线是新的和有效的马尔可夫链蒙特卡罗技术的发展和理论分析,技术和计算能力的进步,使许多历史上难以解决的问题,在统计服从常规实施使用某些概率算法。 尽管经过了二十年的深入研究,我们对这些复杂算法在高维中的行为的理论理解仍然很原始。PI建议研究这些算法,并在高维度上量化它们的行为,并将其应用于解决气候科学中的具体问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natesh Pillai其他文献
Natesh Pillai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Applications of stochastic analysis to statistical inference for stationary and non-stationary Gaussian processes
随机分析在平稳和非平稳高斯过程统计推断中的应用
- 批准号:
2311306 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Construction of statistical inference methods in discrete observed time series data from stochastic processes
随机过程中离散观测时间序列数据的统计推断方法的构建
- 批准号:
19K14593 - 财政年份:2019
- 资助金额:
$ 14.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Statistical inference for stochastic models
随机模型的统计推断
- 批准号:
5724-2011 - 财政年份:2017
- 资助金额:
$ 14.5万 - 项目类别:
Discovery Grants Program - Individual
Deepening statistical inference for stochastic processes via locally non-Gaussian quasi-likelihood
通过局部非高斯拟似然深化随机过程的统计推断
- 批准号:
17K05367 - 财政年份:2017
- 资助金额:
$ 14.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stochastic processes with heavy tails and temporal dependence: modeling, probabilistic properties and statistical inference
具有重尾和时间依赖性的随机过程:建模、概率属性和统计推断
- 批准号:
356036-2013 - 财政年份:2017
- 资助金额:
$ 14.5万 - 项目类别:
Discovery Grants Program - Individual
Stochastic processes with heavy tails and temporal dependence: modeling, probabilistic properties and statistical inference
具有重尾和时间依赖性的随机过程:建模、概率属性和统计推断
- 批准号:
356036-2013 - 财政年份:2016
- 资助金额:
$ 14.5万 - 项目类别:
Discovery Grants Program - Individual
Stochastic processes with heavy tails and temporal dependence: modeling, probabilistic properties and statistical inference
具有重尾和时间依赖性的随机过程:建模、概率属性和统计推断
- 批准号:
356036-2013 - 财政年份:2015
- 资助金额:
$ 14.5万 - 项目类别:
Discovery Grants Program - Individual
Statistical inference for stochastic processes and application to high-frequency financial data
随机过程的统计推断及其在高频金融数据中的应用
- 批准号:
15K21598 - 财政年份:2015
- 资助金额:
$ 14.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Statistical inference by the method of super high dimensional stochastic analysis
超高维随机分析方法的统计推断
- 批准号:
15K00062 - 财政年份:2015
- 资助金额:
$ 14.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical inference for stochastic models
随机模型的统计推断
- 批准号:
5724-2011 - 财政年份:2014
- 资助金额:
$ 14.5万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




