Sensor-enabled Geometric Blocks for Research in Early-childhood Education

用于幼儿教育研究的传感器驱动的几何块

基本信息

  • 批准号:
    1109270
  • 负责人:
  • 金额:
    $ 29.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

This REESE Pathways project aims to develop and evaluate a novel procedural and methodological approach for assessing cognitive and fine-motor skills in children through sensor-embedded geometric blocks. Cognitive problem-solving, fine-motor control, and working memory skills are closely linked to fundamental STEM reasoning and learning abilities. Employing a set of sensor-integrated geometric blocks and an interactive graphical user interface, the blocks will function as an automated, objective, and multimodal assessment and educational tool for researchers, clinicians, educators, and parents, while also being engaging for children.Three types of blocks will be developed: assembly, shape matching, and shape memory. The three types address children's abilities of conceptual reasoning, problem-solving, and working memory, in addition to fine-motor control and visual-motor integration. Initial evaluation will focus on testing safety, durability, and usability of the developed technology. Reliability and validity evaluation will later be conducted on young children, aged 4 to 6. This project will provide advanced instrumentation for related research areas by enabling collection from multiple real-time data sources that are objective, simultaneous, and cumulative in a variety of different environmental settings. It will bring a direct impact on early education for preschoolers and school-aged children by providing a tangible interface for learning fundamental STEM content in various formal and informal educational settings. Furthermore, it can be easily transformed into various tests for measuring intelligence, achievement, learning capability, motor proficiency, spatial memory, and attention, while addressing individual differences and special needs, particularly for underrepresented groups. The blocks may also be extended to interventional and therapeutic applications for persons with cognitive or motor disabilities.
该 REESE Pathways 项目旨在开发和评估一种新颖的程序和方法,通过嵌入传感器的几何块来评估儿童的认知和精细运动技能。认知问题解决、精细运动控制和工作记忆技能与基本的 STEM 推理和学习能力密切相关。这些积木采用一组传感器集成的几何积木和交互式图形用户界面,将作为研究人员、临床医生、教育工作者和家长的自动化、客观和多模式评估和教育工具,同时也能吸引儿童。将开发三种类型的积木:组装、形状匹配和形状记忆。除了精细运动控制和视觉运动整合之外,这三种类型还针对儿童的概念推理、解决问题和工作记忆的能力。初步评估将侧重于测试所开发技术的安全性、耐用性和可用性。随后将对 4 至 6 岁的幼儿进行可靠性和有效性评估。该项目将为相关研究领域提供先进的仪器,通过在各种不同环境设置下从多个实时数据源收集客观、同时和累积的数据。 It will bring a direct impact on early education for preschoolers and school-aged children by providing a tangible interface for learning fundamental STEM content in various formal and informal educational settings.此外,它可以很容易地转化为测量智力、成就、学习能力、运动熟练程度、空间记忆和注意力的各种测试,同时解决个体差异和特殊需求,特别是对于代表性不足的群体。这些模块还可以扩展到针对认知或运动障碍人士的介入和治疗应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kiju Lee其他文献

Adaptive Centroidal Voronoi Tessellation With Agent Dropout and Reinsertion for Multi-Agent Non-Convex Area Coverage
具有代理退出和重新插入的自适应质心 Voronoi 曲面细分,用于多代理非凸区域覆盖
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Kangneoung Lee;Kiju Lee
  • 通讯作者:
    Kiju Lee
Towards social-therapeutic robots: How to strategically implement a robot for social group therapy?
迈向社交治疗机器人:如何战略性地实施社交团体治疗机器人?
Consensus decision-making in artificial swarms via entropy-based local negotiation and preference updating
通过基于熵的局部协商和偏好更新在人工群体中达成共识决策
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Chuanqi Zheng;Kiju Lee
  • 通讯作者:
    Kiju Lee
Woody: Low-Cost, Open-Source Humanoid Torso Robot
Woody:低成本、开源人形躯干机器人
Effects of the crystallographic orientation of Sn grain during electromigration test
电迁移试验中Sn晶粒晶体取向的影响
  • DOI:
    10.1109/cpmtsympj.2010.5679668
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kiju Lee;Keun;K. Yamanaka;Y. Tsukada;Soichi Kuritani;M. Ueshima;K. Suganuma
  • 通讯作者:
    K. Suganuma

Kiju Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kiju Lee', 18)}}的其他基金

CRII: CHS: TongueWrite: An efficient tongue-based text-entry method using Multifunctional intraORal Assistive technology (MORA)
CRII:CHS:TongueWrite:使用多功能口内辅助技术 (MORA) 的高效基于舌头的文本输入方法
  • 批准号:
    1948503
  • 财政年份:
    2020
  • 资助金额:
    $ 29.05万
  • 项目类别:
    Standard Grant
PFI-TT: Interactive Block Games for Routine Cognitive Assessment of Mild Cognitive Impairment and Alzheimer's Disease
PFI-TT:用于轻度认知障碍和阿尔茨海默氏病常规认知评估的交互式块游戏
  • 批准号:
    2002721
  • 财政年份:
    2019
  • 资助金额:
    $ 29.05万
  • 项目类别:
    Standard Grant
PFI-TT: Interactive Block Games for Routine Cognitive Assessment of Mild Cognitive Impairment and Alzheimer's Disease
PFI-TT:用于轻度认知障碍和阿尔茨海默氏病常规认知评估的交互式块游戏
  • 批准号:
    1918740
  • 财政年份:
    2019
  • 资助金额:
    $ 29.05万
  • 项目类别:
    Standard Grant
PFI:AIR - TT: SIG-Blocks: Tangible Game Technology for Cognitive Assessment and Rehabilitation of People with Traumatic Brain Injuries
PFI:AIR - TT:SIG-Blocks:用于脑外伤患者认知评估和康复的有形游戏技术
  • 批准号:
    1445012
  • 财政年份:
    2014
  • 资助金额:
    $ 29.05万
  • 项目类别:
    Standard Grant

相似海外基金

M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
  • 批准号:
    10096988
  • 财政年份:
    2024
  • 资助金额:
    $ 29.05万
  • 项目类别:
    EU-Funded
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
  • 批准号:
    10110118
  • 财政年份:
    2024
  • 资助金额:
    $ 29.05万
  • 项目类别:
    EU-Funded
Low Carbon Impact AI-Enabled Net Zero Advisory Solution
低碳影响人工智能支持的净零咨询解决方案
  • 批准号:
    10112272
  • 财政年份:
    2024
  • 资助金额:
    $ 29.05万
  • 项目类别:
    SME Support
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
  • 批准号:
    10091423
  • 财政年份:
    2024
  • 资助金额:
    $ 29.05万
  • 项目类别:
    Collaborative R&D
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
  • 批准号:
    EP/X040828/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.05万
  • 项目类别:
    Research Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 29.05万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 29.05万
  • 项目类别:
    Standard Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 29.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 29.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 29.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了