Application Robustification

应用程序强化

基本信息

  • 批准号:
    1118391
  • 负责人:
  • 金额:
    $ 9.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

All of computing today relies on an abstraction where software expects the hardware to behave flawlessly for all inputs under all conditions. However, for emerging circuits/devices, the cost of maintaining the abstraction of flawless hardware will be prohibitive due to variations and we may need to rethink the correctness contract between hardware and software. The primary focus of the project is application robustification ? fundamental algorithmic methodologies to transform arbitrary applications such that they can continue to make forward progress in spite of errors produced by the hardware. In this project, our preliminary research effort is focused on a) techniques to convert different classes of application kernels into robust, efficiently solvable stochastic optimization problems that can tolerate hardware errors, b) techniques based on Krylov subspace methods, gradient projection, quasi-Newton approaches, stochastic approximation theory-based approaches, preconditioning techniques, and intelligent step sizing to reduce the cost of robustness for different forms of hardware variations, and c) low overhead checksum-based techniques robustifying sparse linear algebra libraries and graph algorithms. Broader impact of this project includes development of a potentially promising approach to ride Moore's Law and training students in both the hardware and software aspects of computing in face of errors. Broader education will also be achieved through research artifacts (e.g., library of error tolerant kernels) that will be made available for research and education.
今天所有的计算都依赖于一种抽象,即软件期望硬件在所有条件下的所有输入都能完美地运行。然而,对于新兴的电路/设备,由于各种变化,维护完美硬件抽象的成本将令人望而却步,我们可能需要重新考虑硬件和软件之间的正确性契约。该项目的主要焦点是应用程序健壮性。转换任意应用程序的基本算法方法,使它们能够在硬件产生错误的情况下继续向前发展。在这个项目中,我们的初步研究工作集中在a)将不同类别的应用核转换为可容忍硬件错误的鲁棒的、可有效解决的随机优化问题的技术,b)基于Krylov子空间方法、梯度投影、准牛顿方法、基于随机逼近理论的方法、预处理技术,智能步长以减少不同形式硬件变化的鲁棒性成本,以及c)低开销的基于校验和的技术,增强稀疏线性代数库和图算法的鲁棒性。这个项目更广泛的影响包括开发一种潜在的有前途的方法来驾驭摩尔定律,并在面对错误的计算的硬件和软件方面训练学生。更广泛的教育也将通过研究工件(例如,容错内核库)来实现,这些工件将用于研究和教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rakesh Kumar其他文献

Sustainable Intensification of Cropping Systems under Conservation Agriculture Practices: Impact on Yield, Productivity and Profitability of Wheat
保护性农业实践下耕作制度的可持续集约化:对小麦产量、生产力和盈利能力的影响
  • DOI:
    10.3390/su15097468
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Arun Kumar;Kulvir Singh Saini;Hemant Dasila;Rakesh Kumar;K. Devi;Yashpal Singh Bisht;Manish Yadav;Shivani Kothiyal;Aaradhana Chilwal;D. Maithani;P. Kaushik
  • 通讯作者:
    P. Kaushik
A Study On Renal Function Tests and its Correlation With Blood Glucose And EGFR in Freshly Diagnosed Type-2 Diabetes Patients
初诊2型糖尿病患者肾功能检查及其与血糖、EGFR的相关性研究
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rakesh Kumar;D. Ranjana;D. Jairam
  • 通讯作者:
    D. Jairam
Foliar application of plant growth regulators modulates the productivity and chemical profile of damask rose (Rosa damascena Mill.) under mid hill conditions of the western Himalaya
叶面喷施植物生长调节剂可调节喜马拉雅山西部中山条件下大马士革玫瑰 (Rosa damascena Mill.) 的生产力和化学成分
  • DOI:
    10.1016/j.indcrop.2020.113024
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    M. Thakur;Rakesh Kumar
  • 通讯作者:
    Rakesh Kumar
Descriptive study of clinical profile and outcome in patients of acute on chronic liver failure, at a tertiary care center in Northern India
印度北部三级护理中心急性慢性肝衰竭患者临床特征和结果的描述性研究
Abstract 4694: Whole-exome sequencing of gastric cancer identifies germline PIK3R1 variant as a novel genetic biomarker for a PI3K beta-isoform selective inhibitor, GSK2636771
摘要 4694:胃癌的全外显子组测序将种系 PIK3R1 变体鉴定为 PI3K β 亚型选择性抑制剂 GSK2636771 的新型遗传生物标志物
  • DOI:
    10.1158/1538-7445.am2015-4694
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chan Kim;W. Kwon;S. Rha;S. Kang;Hyoki Kim;C. Buser;L. Yan;Rakesh Kumar;H. Chung
  • 通讯作者:
    H. Chung

Rakesh Kumar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rakesh Kumar', 18)}}的其他基金

SHF: Small: Printed Computer Systems
SHF:小型:印刷计算机系统
  • 批准号:
    2006763
  • 财政年份:
    2020
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Software Canaries
合作研究:软件金丝雀
  • 批准号:
    1255857
  • 财政年份:
    2013
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Continuing Grant
Collaborative Research: Variability-Aware Software for Efficient Computing with Nanoscale Devices
协作研究:利用纳米级设备进行高效计算的可变性感知软件
  • 批准号:
    1028888
  • 财政年份:
    2010
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Continuing Grant
An Early Stage Exploration of Stochastic Computer Systems
随机计算机系统的早期探索
  • 批准号:
    0939948
  • 财政年份:
    2009
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Standard Grant

相似海外基金

Modern Statistical Optimization, Robustification and Inference with Applications to Big Data Analytics
现代统计优化、稳健化和推理及其在大数据分析中的应用
  • 批准号:
    RGPIN-2018-06484
  • 财政年份:
    2022
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Discovery Grants Program - Individual
Modern Statistical Optimization, Robustification and Inference with Applications to Big Data Analytics
现代统计优化、稳健化和推理及其在大数据分析中的应用
  • 批准号:
    RGPIN-2018-06484
  • 财政年份:
    2021
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Discovery Grants Program - Individual
Can machines be trusted? Robustification of deep learning for medical imaging
机器可以信任吗?
  • 批准号:
    10640056
  • 财政年份:
    2020
  • 资助金额:
    $ 9.86万
  • 项目类别:
Can machines be trusted? Robustification of deep learning for medical imaging
机器可以信任吗?
  • 批准号:
    10371129
  • 财政年份:
    2020
  • 资助金额:
    $ 9.86万
  • 项目类别:
Can machines be trusted? Robustification of deep learning for medical imaging
机器可以信任吗?
  • 批准号:
    10208969
  • 财政年份:
    2020
  • 资助金额:
    $ 9.86万
  • 项目类别:
Modern Statistical Optimization, Robustification and Inference with Applications to Big Data Analytics
现代统计优化、稳健化和推理及其在大数据分析中的应用
  • 批准号:
    RGPIN-2018-06484
  • 财政年份:
    2020
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Network Robustification: Theories, Algorithms and Applications
职业:网络鲁棒化:理论、算法和应用
  • 批准号:
    1947135
  • 财政年份:
    2019
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Continuing Grant
Modern Statistical Optimization, Robustification and Inference with Applications to Big Data Analytics
现代统计优化、稳健化和推理及其在大数据分析中的应用
  • 批准号:
    RGPIN-2018-06484
  • 财政年份:
    2019
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Discovery Grants Program - Individual
Modern Statistical Optimization, Robustification and Inference with Applications to Big Data Analytics
现代统计优化、稳健化和推理及其在大数据分析中的应用
  • 批准号:
    DGECR-2018-00045
  • 财政年份:
    2018
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Discovery Launch Supplement
Modern Statistical Optimization, Robustification and Inference with Applications to Big Data Analytics
现代统计优化、稳健化和推理及其在大数据分析中的应用
  • 批准号:
    RGPIN-2018-06484
  • 财政年份:
    2018
  • 资助金额:
    $ 9.86万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了