Linear Conductance-Based Mechanisms Underlying Oscillations in Neuronal Networks

神经元网络中基于线性电导的振荡机制

基本信息

  • 批准号:
    1122291
  • 负责人:
  • 金额:
    $ 47.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-10-01 至 2015-09-30
  • 项目状态:
    已结题

项目摘要

The primary goal of this project is to provide a new understanding of the neuronal properties that are critical for producing stable slow bursting oscillations and to explore the consequences of their activation when neurons expressing them are embedded in a network. Nonlinear regenerative inward currents are thought to be important in producing slow oscillations and bursting. This project uses a novel approach where the nonlinear inward current is replaced with a linear current of negative conductance. This approach exposes the multiple roles played by regenerative inward currents and simplifies the investigation of the contribution of other ionic currents to oscillatory activity. It also allows for a simpler mathematical analysis of the mechanisms that generate neuronal oscillations. This methodology is used to investigate the role of specific ionic currents in the generation and shaping of oscillations in individual neurons, to examine how synaptic interactions between neurons cooperate or compete with intrinsic properties to produce oscillations in networks of heterogeneous neurons, and to determine if the mechanisms that give rise to oscillations in isolated cells remain unchanged when the neuron is part of a network. These aims are pursued using techniques of dynamical systems and bifurcation theory in reduced mathematical models as well as simulations of detailed biophysical models, and electrophysiological experiments on bursting neurons of the crab pyloric network. These three methods are developed in parallel allowing for continual exchange of findings between the theoretical and experimental approaches.Numerous behaviors ranging from locomotion to cognitive tasks rely on oscillatory activity generated by networks of neurons in the brain. Despite the predominance and indispensability of brain oscillations, few theoretical tools are available for understanding how such oscillations are generated or controlled. A novel approach is used that combines biological experiments and mathematical analysis to break apart the complex interactions present in network components into simple building blocks. This allows core elements that are important in the generation of oscillations to be extracted and will clarify the role of other existing components in sculpting behavior using mathematical models. The models are tested through experiments that connect real time computer-simulated neurons to small oscillatory networks in the crab central nervous systems. This project provides a framework for developing neural-based control systems with potential applications in robotics and bio-inspired computing.
这个项目的主要目标是提供一个新的理解的神经元的特性是至关重要的产生稳定的缓慢爆发振荡,并探讨其激活的后果时,表达它们的神经元嵌入在网络中。 非线性再生内向电流被认为在产生缓慢振荡和爆发中是重要的。 该项目使用了一种新的方法,其中非线性内向电流被替换为负电导的线性电流。 这种方法暴露了再生内向电流所起的多重作用,并简化了其他离子电流对振荡活动的贡献的调查。 它还允许对产生神经元振荡的机制进行更简单的数学分析。 该方法用于研究特定离子电流在单个神经元振荡的产生和形成中的作用,研究神经元之间的突触相互作用如何与内在特性合作或竞争以在异质神经元网络中产生振荡,并确定当神经元是网络的一部分时,引起孤立细胞振荡的机制是否保持不变。 这些目标是追求使用技术的动力系统和分叉理论减少数学模型,以及模拟详细的生物物理模型,和电生理实验的螃蟹幽门网络爆裂神经元。 这三种方法是并行开发的,允许理论和实验方法之间不断交换发现。从运动到认知任务的许多行为都依赖于大脑神经元网络产生的振荡活动。 尽管脑振荡的优势和不可或缺,但很少有理论工具可以用来理解这种振荡是如何产生或控制的。 使用一种新的方法,将生物实验和数学分析相结合,将网络组件中存在的复杂相互作用分解为简单的构建模块。 这允许提取在产生振荡中重要的核心元素,并将使用数学模型阐明其他现有组件在雕刻行为中的作用。 该模型通过实验进行测试,连接真实的时间计算机模拟的神经元,在螃蟹中枢神经系统的小振荡网络。 该项目提供了一个框架,开发基于神经的控制系统,在机器人和生物启发计算的潜在应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amitabha Bose其他文献

Dynamical mechanisms of how an RNN keeps a beat, uncovered with a low-dimensional reduced model
  • DOI:
    10.1038/s41598-024-77849-x
  • 发表时间:
    2024-11-02
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Klavdia Zemlianova;Amitabha Bose;John Rinzel
  • 通讯作者:
    John Rinzel
Approximating the phase response curves of square wave bursting neurons
  • DOI:
    10.1186/1471-2202-9-s1-p24
  • 发表时间:
    2008-07-11
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Ikemefuna Agbanusi;Alborz Yarahmadi;Amitabha Bose;Jorge Golowasch;Farzan Nadim
  • 通讯作者:
    Farzan Nadim

Amitabha Bose的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amitabha Bose', 18)}}的其他基金

The role of short-term synaptic plasticity in feedback neuronal networks
短期突触可塑性在反馈神经元网络中的作用
  • 批准号:
    0615168
  • 财政年份:
    2006
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Continuing grant
UBM: An Undergraduate Biology and Mathematics Training Program at NJIT
UBM:NJIT 的本科生物和数学培训项目
  • 批准号:
    0436244
  • 财政年份:
    2004
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Standard Grant
Functional Roles for Short-term Synaptic Plasticity in Neuronal Networks
神经元网络中短期突触可塑性的功能作用
  • 批准号:
    0315862
  • 财政年份:
    2003
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Standard Grant
Neural Mechanisms for Generating Temporal Coding
生成时间编码的神经机制
  • 批准号:
    9973230
  • 财政年份:
    1999
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Standard Grant

相似海外基金

Quantized Phonon Conductance of One-dimensional Systems
一维系统的量子化声子电导
  • 批准号:
    2231376
  • 财政年份:
    2024
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Standard Grant
Monitoring thermal conductance of solid-liquid interface in engineering fluids
监测工程流体中固液界面的热导率
  • 批准号:
    2849956
  • 财政年份:
    2023
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Studentship
Regulation of cardiac small-conductance calcium-activated potassium channels by PIP2
PIP2 对心脏小电导钙激活钾通道的调节
  • 批准号:
    10751363
  • 财政年份:
    2023
  • 资助金额:
    $ 47.1万
  • 项目类别:
Enhanced conductance at interfaces by ballistic thermal injection
通过弹道热注入增强界面电导
  • 批准号:
    2318576
  • 财政年份:
    2023
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Standard Grant
Sequencing Glycosaminoglycans using Single Molecule Enzyme Conductance Fluctuations
使用单分子酶电导波动对糖胺聚糖进行测序
  • 批准号:
    10568069
  • 财政年份:
    2023
  • 资助金额:
    $ 47.1万
  • 项目类别:
Conductance Isotope Effect: A Chemical Tool to Explore the Microscopic Nature of Polarons in Pi-Conjugated Molecular Wires
电导同位素效应:探索 Pi 共轭分子线中极化子微观性质的化学工具
  • 批准号:
    2304763
  • 财政年份:
    2023
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Standard Grant
Defining the sites of interaction for corrector molecules on wildtype- and F508del-mutant cystic fibrosis transmembrane conductance regulator protein
定义野生型和 F508del 突变体囊性纤维化跨膜电导调节蛋白上校正分子的相互作用位点
  • 批准号:
    486619
  • 财政年份:
    2022
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Studentship Programs
Relating leaf cuticular conductance to light reflectance spectra in plants
将植物叶片角质层电导率与光反射光谱联系起来
  • 批准号:
    574138-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 47.1万
  • 项目类别:
    University Undergraduate Student Research Awards
Combined Single-Molecule Raman and Conductance Spectroscopies for Understanding Electric Field-Controlled Chemistry
结合单分子拉曼光谱和电导光谱来了解电场控制化学
  • 批准号:
    2204223
  • 财政年份:
    2022
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Continuing Grant
An integrated prime editing system for pathogenic cystic fibrosis transmembrane conductance regulator allele correction in human cells
用于人类细胞中致病性囊性纤维化跨膜电导调节器等位基因校正的集成引物编辑系统
  • 批准号:
    486540
  • 财政年份:
    2022
  • 资助金额:
    $ 47.1万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了