Stress Corrosion Micro-Cracking or Static Fatigue: The Principal Cause of Rate Effects and "Aging" in Sand
应力腐蚀微裂纹或静态疲劳:砂中速率效应和“老化”的主要原因
基本信息
- 批准号:1129009
- 负责人:
- 金额:$ 35.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Time and rate effects in sands affect both the short- and long-term behavior of earth structures, yet understanding of the causes of that behavior is lacking. A hypothesis is suggested that makes use of the process of micro-fracturing of the microscopic morphological features on grain surfaces to explain the nature of time effects in sand. The new approach this research is taking makes it potentially transformative. Experimental observation techniques based on Scanning Electron Microscopy and Atomic Force Microscopy will be employed to produce visual evidence for time-delayed micro-fracturing of asperities on grain surfaces (static fatigue), whereas micro- and macro-loading tests will be used to gain quantitative evidence. The scientific merit of this research is in its creative and original concept exploiting the multi-scale approach to explain the puzzling time-related effects in sand. The engineering relevance of this research is that the time-dependent behavior of soils can have important consequences on design and long-term behavior of earth structures and on soil-structure interaction (for instance, the load on retaining structures can increase in time as a result of the time-dependent nature of sand behavior). The impact of this research will affect areas beyond geotechnical engineering, e.g., space exploration missions, which require predictions of surface mobility, planning of drilling operations, and processing of the Lunar/Martian regolith. Due to the absence of water and atmosphere, Lunar regolith grains have a rich surface morphology, a characteristic central to the hypothesis in this research. This research promotes a new concept, advances discovery, and promotes learning.
砂土的时间和速率效应影响土结构的短期和长期行为,但对这种行为的原因缺乏了解。 提出了一个假设,利用颗粒表面微观形态特征的微破裂过程来解释砂中时间效应的性质。 这项研究所采用的新方法使其具有潜在的变革性。 实验观察技术的基础上扫描电子显微镜和原子力显微镜将被用来产生视觉证据的时间延迟微破裂的凹凸不平的晶粒表面(静态疲劳),而微观和宏观加载测试将被用来获得定量证据。 这项研究的科学价值在于其创造性和原创性的概念,利用多尺度方法来解释沙子中令人困惑的时间相关效应。 本研究的工程相关性在于,土壤的时间依赖性行为可能对土结构的设计和长期行为以及土壤-结构相互作用产生重要影响(例如,由于沙子行为的时间依赖性,挡土结构上的荷载可能会随着时间的推移而增加)。 这项研究的影响将影响岩土工程以外的领域,例如,空间探索任务,这需要预测表面的流动性,计划钻井作业,以及处理月球/火星的风化层。 由于缺乏水和大气,月壤颗粒具有丰富的表面形态,这是本研究假设的核心特征。 这项研究促进了一个新的概念,推进发现,并促进学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Radoslaw Michalowski其他文献
Radoslaw Michalowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Radoslaw Michalowski', 18)}}的其他基金
Evolution of Contact Shear Resistance and Arching in Silica Sand
硅砂接触剪切阻力和起拱的演变
- 批准号:
1901582 - 财政年份:2019
- 资助金额:
$ 35.41万 - 项目类别:
Standard Grant
Time Effects in Sand: Delayed Micro-Cracking, Contact Fatigue, and Aging
沙子中的时间效应:延迟微裂纹、接触疲劳和老化
- 批准号:
1537222 - 财政年份:2015
- 资助金额:
$ 35.41万 - 项目类别:
Standard Grant
NEESR-SG: Damage Detection and Health Monitoring of Buried Pipelines after Earthquake-Induced Ground Movement
NEESR-SG:地震引起的地面运动后埋地管道的损坏检测和健康监测
- 批准号:
0724022 - 财政年份:2007
- 资助金额:
$ 35.41万 - 项目类别:
Standard Grant
Fiber Reinforcement for Soils and Stability of Fiber-Reinforced Soil Structures
纤维增强土壤和纤维增强土壤结构的稳定性
- 批准号:
9820832 - 财政年份:1999
- 资助金额:
$ 35.41万 - 项目类别:
Continuing Grant
Fiber Reinforcement for Soils and Stability of Fiber-Reinforced Soil Structures
纤维增强土壤和纤维增强土壤结构的稳定性
- 批准号:
0096167 - 财政年份:1999
- 资助金额:
$ 35.41万 - 项目类别:
Continuing Grant
Soil Nailing and Geosynthetic Reinforcement for Seismic Loads
抗震荷载的土钉和土工合成材料加固
- 批准号:
9634193 - 财政年份:1996
- 资助金额:
$ 35.41万 - 项目类别:
Continuing Grant
Analysis and Synthesis of Reinforced Soil Structures, and Collapse Patterns of Reinforced Soil
加筋土结构的分析与综合以及加筋土的塌陷模式
- 批准号:
9301494 - 财政年份:1993
- 资助金额:
$ 35.41万 - 项目类别:
Continuing Grant
RIA: Failure Criteria of Reinforced Soil and Analysis of Reinforced Soil Structures
RIA:加筋土的破坏准则和加筋土结构的分析
- 批准号:
9107778 - 财政年份:1991
- 资助金额:
$ 35.41万 - 项目类别:
Standard Grant
相似国自然基金
高硫铅锌矿中黄铁矿/毒砂对矿物颗粒间Galvanic Corrosion的影响机理及调控机制
- 批准号:52074355
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Characterizing Corrosion Inhibition Performance of Advanced Coating Technologies using Micro Electrochemical Methods
使用微电化学方法表征先进涂层技术的缓蚀性能
- 批准号:
RGPIN-2022-04696 - 财政年份:2022
- 资助金额:
$ 35.41万 - 项目类别:
Discovery Grants Program - Individual
Characterizing Corrosion Inhibition Performance of Advanced Coating Technologies using Micro Electrochemical Methods
使用微电化学方法表征先进涂层技术的缓蚀性能
- 批准号:
DGECR-2022-00013 - 财政年份:2022
- 资助金额:
$ 35.41万 - 项目类别:
Discovery Launch Supplement
Stress corrosion cracking (SCC) of FeCrNi alloys and IASCC of stainless steels: evaluation using micro-mechanical testing techniques
FeCrNi 合金的应力腐蚀开裂 (SCC) 和不锈钢的 IASCC:使用微机械测试技术进行评估
- 批准号:
536313-2018 - 财政年份:2021
- 资助金额:
$ 35.41万 - 项目类别:
Collaborative Research and Development Grants
Stress corrosion cracking (SCC) of FeCrNi alloys and IASCC of stainless steels: evaluation using micro-mechanical testing techniques
FeCrNi 合金的应力腐蚀开裂 (SCC) 和不锈钢的 IASCC:使用微机械测试技术进行评估
- 批准号:
536313-2018 - 财政年份:2020
- 资助金额:
$ 35.41万 - 项目类别:
Collaborative Research and Development Grants
From Macro to Micro: Studying the Corrosion of Stainless Steel Thermal Spray Coatings using Electrochemical Techniques
从宏观到微观:利用电化学技术研究不锈钢热喷涂层的腐蚀
- 批准号:
519521-2018 - 财政年份:2020
- 资助金额:
$ 35.41万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CDS&E: Corrosion-induced Damage and Fracture: Pushing Micro-Scale Simulations to the Macro-Scale, in Both Space and Time
CDS
- 批准号:
1953346 - 财政年份:2020
- 资助金额:
$ 35.41万 - 项目类别:
Standard Grant
Stress corrosion cracking (SCC) of FeCrNi alloys and IASCC of stainless steels: evaluation using micro-mechanical testing techniques
FeCrNi 合金的应力腐蚀开裂 (SCC) 和不锈钢的 IASCC:使用微机械测试技术进行评估
- 批准号:
536313-2018 - 财政年份:2019
- 资助金额:
$ 35.41万 - 项目类别:
Collaborative Research and Development Grants
From Macro to Micro: Studying the Corrosion of Stainless Steel Thermal Spray Coatings using Electrochemical Techniques
从宏观到微观:利用电化学技术研究不锈钢热喷涂层的腐蚀
- 批准号:
519521-2018 - 财政年份:2019
- 资助金额:
$ 35.41万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
From Macro to Micro: Studying the Corrosion of Stainless Steel Thermal Spray Coatings using Electrochemical Techniques
从宏观到微观:利用电化学技术研究不锈钢热喷涂层的腐蚀
- 批准号:
519521-2018 - 财政年份:2018
- 资助金额:
$ 35.41万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A new alloy design concept for high-corrosion resistant steels based on micro-electrochemistry of local dissolution and repassivation
基于局部溶解和再钝化微电化学的高耐腐蚀钢新合金设计理念
- 批准号:
17H01331 - 财政年份:2017
- 资助金额:
$ 35.41万 - 项目类别:
Grant-in-Aid for Scientific Research (A)