Collaborative Research: Forecasting and forestalling tipping points in an aquatic ecosystem

合作研究:预测和预防水生生态系统的临界点

基本信息

  • 批准号:
    1144056
  • 负责人:
  • 金额:
    $ 19.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

Identifying, forecasting, and managing state changes (also known as thresholds, tipping points, or regime shifts) are central challenges in many fields. Preventing stressed ecosystems from collapsing into altered states that do not provide useful ecosystem services is a major environmental challenge. This project will identify markers for, and potential means to manage, tipping points in aquatic ecosystems such as lakes, rivers, and streams. Nutrients will be added to aquatic microecosystems that form within water-filled leaves of northern pitcher plants in a series of experiments mimicking nutrient pollution and resultant ecosystem collapse seen in larger lakes. Critical thresholds, beyond which intervention cannot stop the breakdown of the system, will be identified. Quantitative methods will be used to identify protein biomarkers that can serve as early warning indicators of ecosystem collapse. Protein biomarkers are hypothesized to be better indicators than traditional ones such as oxygen levels or algal blooms, which reflect impending state changes too late to reverse them or after they have already occurred.Documenting, understanding, forecasting, and averting state changes is of widespread and immediate importance not only to ecologists and environmental scientists, but also to economists, social scientists, policy makers, and environmental managers. Nutrient enrichment from fertilizers, runoff, and atmospheric deposition can cause lakes, rivers, and streams to switch to dramatically different, low oxygen states characterized by algal blooms and fish die-offs. The most significant broader impact of the proposed research will be to provide empirical tests of regime shifts that will help to convince the broader public that scientists can detect and manage state changes. Future applications of this work could lead to the development of simple water-quality test kits that can forecast ecosystem tipping points early enough to prevent them. Resources will be devoted to educating K-12 teachers, undergraduate students and postdoctoral researchers through their continuous involvement in basic ecological research.
识别、预测和管理状态变化(也称为阈值、临界点或政权转变)是许多领域的核心挑战。防止受到压力的生态系统崩溃成为不提供有用生态系统服务的改变状态,是一项重大的环境挑战。该项目将确定湖泊、河流和溪流等水生生态系统中临界点的标志和潜在的管理手段。在一系列实验中,营养物质将被添加到水生微生态系统中,这些微生态系统形成于北方猪笼草充满水的叶子中,模拟营养物质污染和由此导致的生态系统崩溃,在更大的湖泊中出现。将确定关键门槛,超过这些门槛,干预无法阻止系统崩溃。将使用定量方法来确定可以作为生态系统崩溃早期预警指标的蛋白质生物标记物。蛋白质生物标志物被认为是比氧气水平或藻类水华等传统指标更好的指标,后者反映即将发生的状态变化太晚而无法逆转,或者已经发生。记录、理解、预测和避免状态变化不仅对生态学家和环境科学家具有广泛而直接的重要性,而且对经济学家、社会科学家、政策制定者和环境管理人员也具有广泛而直接的重要性。化肥、径流和大气沉积带来的营养丰富会导致湖泊、河流和溪流转变为截然不同的低氧状态,其特征是藻类大量繁殖和鱼类死亡。拟议中的这项研究最重要的更广泛的影响将是为政权更迭提供经验测试,这将有助于让更广泛的公众相信,科学家可以检测和管理国家的变化。这项工作的未来应用可能会导致开发简单的水质测试套件,可以及早预测生态系统临界点,以防止它们。资源将致力于通过不断参与基础生态研究来教育K-12教师、本科生和博士后研究人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaron Ellison其他文献

Aaron Ellison的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aaron Ellison', 18)}}的其他基金

FSML: Walk-up towers for research, education, communication, and outreach at the Harvard Forest
FSML:哈佛森林的研究、教育、通讯和外展大楼
  • 批准号:
    1224437
  • 财政年份:
    2012
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Standard Grant
Dimensions: Collaborative: The climate cascade: functional and evolutionary consequences of climatic change on species, trait, and genetic diversity in a temperate ant community
维度:协作:气候级联:气候变化对温带蚂蚁群落的物种、性状和遗传多样性的功能和进化影响
  • 批准号:
    1136646
  • 财政年份:
    2012
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Standard Grant
REU Site: Harvard Forest Summer Research Program in Forest Ecology 2010-2014: Ecological data-model fusion and environmental forecasting for the 21st Century
REU 网站:哈佛大学森林生态学夏季研究计划 2010-2014:21 世纪生态数据模型融合和环境预测
  • 批准号:
    1003938
  • 财政年份:
    2010
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Standard Grant
FSML: Infrastructure for Molecular and Microbial Ecology at the Harvard Forest
FSML:哈佛森林分子和微生物生态学基础设施
  • 批准号:
    0930516
  • 财政年份:
    2009
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: Testing the effects of priors on prediction error in Bayesian demographic models
论文研究:测试贝叶斯人口统计模型中先验对预测误差的影响
  • 批准号:
    0909604
  • 财政年份:
    2009
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Moths, Ants, and Carnivorous Plants: the Spatial Dimension of Species Interactions
合作研究:飞蛾、蚂蚁和食虫植物:物种相互作用的空间维度
  • 批准号:
    0541680
  • 财政年份:
    2006
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Continuing Grant
REU Site: Harvard Forest Program in Forest Ecology: Multi-Scale Investigations of a Forested Ecosystem in a Changing World
REU 网站:哈佛森林生态学项目:变化世界中森林生态系统的多尺度调查
  • 批准号:
    0452254
  • 财政年份:
    2005
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Continuing Grant
SGER: Collaborative: Mechanisms of Community Re-Assembly After a Catastrophic Fire
SGER:协作:灾难性火灾后社区重新组装的机制
  • 批准号:
    0301361
  • 财政年份:
    2003
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Effects of Nutrient Stress on a Co-evolved Food Web
合作研究:营养压力对共同进化食物网的影响
  • 批准号:
    0235128
  • 财政年份:
    2003
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Standard Grant
FSML: Infrastructure for Whole-Plant Biology and Experimental Plant Ecology at the Harvard Forest
FSML:哈佛森林全植物生物学和实验植物生态学基础设施
  • 批准号:
    0330605
  • 财政年份:
    2003
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Learning and forecasting high-dimensional extremes: sparsity, causality, privacy
协作研究:学习和预测高维极端情况:稀疏性、因果关系、隐私
  • 批准号:
    2310974
  • 财政年份:
    2023
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
  • 批准号:
    2320148
  • 财政年份:
    2023
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: BioFI- Biodiversity Forecasting Initiative to Understand Population, Community and Ecosystem Function Under Global Change
合作研究:BoCP-实施:BioFI-生物多样性预测倡议,以了解全球变化下的人口、社区和生态系统功能
  • 批准号:
    2416164
  • 财政年份:
    2023
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
  • 批准号:
    2320147
  • 财政年份:
    2023
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning and forecasting high-dimensional extremes: sparsity, causality, privacy
协作研究:学习和预测高维极端情况:稀疏性、因果关系、隐私
  • 批准号:
    2310973
  • 财政年份:
    2023
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: forecasting functional biodiversity change with satellite remote sensing and modeling
合作研究:BoCP-实施:利用卫星遥感和建模预测功能性生物多样性变化
  • 批准号:
    2326013
  • 财政年份:
    2023
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: MRA: Estimating and forecasting nonstationary, multi-scale climate and land-use effects on avian communities
合作研究:MRA:估计和预测非平稳、多尺度气候和土地利用对鸟类群落的影响
  • 批准号:
    2213566
  • 财政年份:
    2023
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: MRA: Estimating and forecasting nonstationary, multi-scale climate and land-use effects on avian communities
合作研究:MRA:估计和预测非平稳、多尺度气候和土地利用对鸟类群落的影响
  • 批准号:
    2213565
  • 财政年份:
    2023
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: forecasting functional biodiversity change with satellite remote sensing and modeling
合作研究:BoCP-实施:利用卫星遥感和建模预测功能性生物多样性变化
  • 批准号:
    2326014
  • 财政年份:
    2023
  • 资助金额:
    $ 19.35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了