EAGER: Optical Control and Reporting of Cystosolic and Organellar pH in situ

EAGER:原位胞浆和细胞器 pH 值的光学控制和报告

基本信息

项目摘要

All forms of life rely on biochemical processes and these processes are either accelerated or inhibited according to the concentration of protons (pH) in their immediate vicinity. The pH changes that occur within nerve cells are therefore predicted to have a profound influence on the ability of nerve cells to transfer and store information. However, it is very difficult to measure or control pH in the nerve cells of live animals, and as a result the influence of pH changes on the nervous system, is difficult to test. Here, the investigators propose to use optical techniques, combined with genetically-encoded proteins, to measure and control the pH of live nerve cells in fruit flies (Drosophila melanogaster). Fluorescent proteins will be used to measure pH, and light-activated proton pumps will be used to control pH. When deployed in the same cell, these proteins will provide the means for establishing dynamic control of pH. These tools will be invaluable for investigating the extent to which the pH fluctuates in nerve cells during naturally occurring activity, and for testing the role of these pH changes in maintaining the capacity of the nerve cells to transfer and store information. Further, the development of these tools for fruit fly nerve cells will facilitate their application in other fields of the biological sciences, from mycology and plant physiology to renal physiology and oncology. Transgenic animals and plasmids generated through this project will be made available directly to the scientific research community. Information regarding the performance and application of the tools will be made available through publications in scientific journals and presentations at scientific meetings. This project will directly provide research training for an MD/PhD graduate student and training opportunities for PhD graduate students, undergraduate students, high-school students and K-12 teachers.
所有形式的生命都依赖于生化过程,这些过程要么被加速,要么被抑制,这取决于它们附近的质子浓度(PH)。因此,预计神经细胞内发生的pH值变化将对神经细胞传输和存储信息的能力产生深远影响。然而,活体动物神经细胞内的pH值很难测量或控制,因此很难测试pH值变化对神经系统的影响。在这里,研究人员建议使用光学技术,结合遗传编码的蛋白质,来测量和控制果蝇(果蝇)活神经细胞的pH值。荧光蛋白将被用来测量pH,光激活的质子泵将被用来控制pH。当部署在同一细胞中时,这些蛋白质将提供建立动态控制pH的手段。这些工具对于研究神经细胞在自然发生的活动期间pH值波动的程度,以及测试这些pH值变化在维持神经细胞传递和存储信息的能力方面的作用,将是非常宝贵的。此外,这些果蝇神经细胞工具的开发将促进它们在其他生物科学领域的应用,从真菌学和植物生理学到肾脏生理学和肿瘤学。通过该项目产生的转基因动物和质粒将直接提供给科学研究界。将通过在科学期刊上发表出版物和在科学会议上作介绍,提供有关这些工具的性能和应用情况的信息。该项目将直接为医学博士研究生提供研究培训,并为博士研究生、本科生、高中生和K-12教师提供培训机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Macleod其他文献

Gregory Macleod的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
  • 批准号:
    BB/Y006380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Research Grant
BODIPY Photocage-Enabled Visualization and Optical Control of saRNA Delivery and Immunogenicity
BODIPY Photocage 实现 saRNA 传递和免疫原性的可视化和光学控制
  • 批准号:
    EP/X027252/2
  • 财政年份:
    2024
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Fellowship
Optical control of nuclear spin-spin couplings and its application to quantum information processing
核自旋-自旋耦合的光控制及其在量子信息处理中的应用
  • 批准号:
    23H01131
  • 财政年份:
    2023
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Morphology control of silver dendrites grown under light and study of their optical functions
光下银枝晶的形貌控制及其光学功能研究
  • 批准号:
    23H01881
  • 财政年份:
    2023
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Trans-synaptic optical control of user-defined synaptic connections
用户定义的突触连接的跨突触光学控制
  • 批准号:
    10732081
  • 财政年份:
    2023
  • 资助金额:
    $ 25.71万
  • 项目类别:
Development of ultra-high-resolution detection and control technique of the cold atoms in optical lattice using a trapped ion
利用捕获离子开发光学晶格中冷原子的超高分辨率探测和控制技术
  • 批准号:
    23K13046
  • 财政年份:
    2023
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantum computing with trapped ions Fast, high-fidelity entanglement via optical phase control
使用捕获离子进行量子计算 通过光学相位控制实现快速、高保真纠缠
  • 批准号:
    2886990
  • 财政年份:
    2023
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Studentship
Realtime observation and optical control of living microbial probes in blood vessels
血管内活微生物探针的实时观察和光学控制
  • 批准号:
    23H00551
  • 财政年份:
    2023
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Optical-electric field control of localized to non-localized phase transition phenomena
局域到非局域相变现象的光电场控制
  • 批准号:
    23K04568
  • 财政年份:
    2023
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
BODIPY Photocage-Enabled Visualization and Optical Control of saRNA Delivery and Immunogenicity
BODIPY Photocage 实现 saRNA 传递和免疫原性的可视化和光学控制
  • 批准号:
    EP/X027252/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了