Collaborative Research: Mechanisms, Modeling, and Geochemical Consequences of Electron Flow in Acid Mine Drainage-Induced Sediments

合作研究:酸性矿山排水诱发沉积物中电子流的机制、模拟和地球化学后果

基本信息

  • 批准号:
    1148194
  • 负责人:
  • 金额:
    $ 22.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-15 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

The transfer of material and energetic substrates for microbial metabolism has historically been viewed as strongly dependent on the diffusion of chemical species within the physicochemical milieu in which the microbial community is active. Ideas that individual organisms and microbial communities may mediate redox reactions despite spatial separation of energetic substrates have now begun to challenge this view. Microbial communities that are electrically integrated in a network of conductive extracellular structures (e.g. microbial nanowires) and redox-active mineral phases may facilitate and exploit the movement of electrons over scales (mm- to cm-scale) far exceeding those of the individual cells (micrometer to meter-scale), referred to as "far-afield extracellular electron transport (EET)." An important implication of farafield EET is that biogeochemical redox reactions may occur despite the spatial separation of reductant, oxidant, and even individual microorganisms themselves. The work proposed here will use an acid mine drainage (AMD)-impacted system to examine the dynamics of electron flow in a "natural" setting. In several settings, when Fe(II)-rich AMD reaches the terrestrial surface aerobic, acidophilic bacteria oxidize Fe(II) to Fe(III). The Fe(III) (hydr)oxides that result from these microbial activities accumulate as 'iron mounds,' which are composed almost exclusively of Fe(III) phases. It is hypothesized that integrated, conductive networks composed of mineral phases, microbial nanowires, and other conductive cellular material facilitate EET and the transfer of electrons through the iron mound, supporting microbiological oxidation of Fe(II) at depths within the iron mound that could not be sustained simply by diffusion of O2 into the mound. Field-based fine-scale geochemical site characterizations coupled with measurements of geo- and electro-chemical changes and detailed characterizations of electrically conductive microbial structures in laboratory-scale sediment incubations will be used to elucidate the rates, scales, and extents of electron transfer processes mediated by iron mound-associated microbial communities. Multiscale physical modeling of electron transfer processes will be used to support and supplement experimental examinations of electron transfer within this system, and will include modeling of electron flow in simulated microbial nanowires, 'biogeobatteries,' and in larger scale systems like that encountered in an iron mound. Results of this work will enhance understanding of microbially mediated geochemical processes in iron mounds and AMD treatment approaches. A non-profit AMD treatment company will serve as an unfunded collaborator on this project to facilitate knowledge transfer to AMD treatment practitioners. Funds from this project will aid in the interdisciplinary training of a post-doctoral researcher, graduate, and undergraduate students, while facilitating a strong collaboration between a public university (The University of Akron) and private university (The University of Southern California). Graduate and undergraduate students will be recruited from UA's McNair Scholars program. The iron mound field site will also serve as a field classroom for formal courses at UA and a local school district.
微生物新陈代谢的物质和能量底物的转移历来被认为强烈依赖于微生物群落活跃的物理化学环境中化学物种的扩散。尽管高能底物在空间上分离,但个别有机体和微生物群落可能会调节氧化还原反应的想法现在已经开始挑战这一观点。在导电细胞外结构(如微生物纳米线)和氧化还原活性矿物相的网络中电集成的微生物群落可以促进和利用电子在远超过单个细胞(微米到米级)的尺度上的移动,称为“远距离细胞外电子传输(EET)”。FARA场EET的一个重要含义是,尽管还原剂、氧化剂甚至单个微生物本身在空间上分离,但仍可能发生生物地球化学氧化还原反应。这里提出的工作将使用酸性矿山废水(AMD)影响的系统来检查在“自然”环境中的电子流动的动力学。在一些环境中,当富含Fe(II)的AMD达到陆地表面的有氧状态时,嗜酸菌将Fe(II)氧化为Fe(III)。这些微生物活动所产生的Fe(III)(氢化物)氧化物以“铁丘”的形式堆积,几乎完全由Fe(III)相组成。据推测,由矿物相、微生物纳米线和其他导电细胞材料组成的集成导电网络促进了EET和电子通过铁丘的转移,支持了铁丘深处Fe(II)的微生物氧化,而这不是简单地通过O2扩散到铁丘中来维持的。在实验室规模的沉积物培养中,将利用野外精细的地球化学点特征,结合地学和电化学变化的测量以及导电微生物结构的详细描述,来阐明铁丘相关微生物群落介导的电子传递过程的速度、规模和程度。电子转移过程的多尺度物理模型将被用来支持和补充该系统内电子转移的实验检查,并将包括模拟微生物纳米线中的电子流动的建模,生物地理生物,以及在更大规模的系统中,如在铁丘中遇到的。这项工作的结果将加强对铁丘和AMD治疗方法中微生物介导的地球化学过程的理解。一家非营利性AMD治疗公司将作为这个项目的非资助合作者,促进AMD治疗从业者的知识转移。该项目的资金将帮助对博士后研究员、研究生和本科生进行跨学科培训,同时促进公立大学(阿克伦大学)和私立大学(南加州大学)之间的密切合作。研究生和本科生将从亚利桑那大学的麦克奈尔奖学金项目中招募。铁丘现场还将作为UA和当地学区正规课程的现场教室。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Senko其他文献

Assessment of Sulfate Concentrations in Water Used During Chemical Stabilization and Its Potential Impact on Sulfate Induced Heave
  • DOI:
    10.1007/s10706-015-9944-y
  • 发表时间:
    2015-11-02
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Douglas Mohn;Teresa J. Cutright;John Senko;Ala Abbas
  • 通讯作者:
    Ala Abbas

John Senko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Senko', 18)}}的其他基金

I-Corps: Microbial Corrosion Monitor
I-Corps:微生物腐蚀监测仪
  • 批准号:
    1936241
  • 财政年份:
    2019
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
Acquisition of X-ray Powder Diffractometer
X射线粉末衍射仪的采集
  • 批准号:
    1255731
  • 财政年份:
    2013
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanisms of community coalescence in synthetic microbiomes
合作研究:合成微生物组中群落合并的机制
  • 批准号:
    2328529
  • 财政年份:
    2024
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanisms of community coalescence in synthetic microbiomes
合作研究:合成微生物组中群落合并的机制
  • 批准号:
    2328528
  • 财政年份:
    2024
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining the role of uranium(V) in the global uranium cycle by characterizing burial mechanisms in marine sinks
合作研究:通过表征海洋汇埋藏机制确定铀(V)在全球铀循环中的作用
  • 批准号:
    2322205
  • 财政年份:
    2024
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344765
  • 财政年份:
    2024
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining the role of uranium(V) in the global uranium cycle by characterizing burial mechanisms in marine sinks
合作研究:通过表征海洋汇埋藏机制确定铀(V)在全球铀循环中的作用
  • 批准号:
    2322206
  • 财政年份:
    2024
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319096
  • 财政年份:
    2024
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344766
  • 财政年份:
    2024
  • 资助金额:
    $ 22.12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了