CAREER: Models and Algorithms for Comparative Analysis of Biological Networks

职业:生物网络比较分析的模型和算法

基本信息

项目摘要

Recent advent of high-throughput technologies for measuring molecular interactions has yielded large collections of biological networks, which enable systematic studies of complex biological organisms. Since biological pathways with critical functions are often conserved across different organisms, comparative analysis of these networks can provide an excellent way of investigating the organization of biological networks, as well as tracking down novel pathways and studying their functions. Intellectual Merit: This project aims to develop a solid mathematical framework for comparative network analysis and devise innovative techniques for comparing genome-scale biological networks. The main research objectives include: (1) develop a multi-state semi-Markov random walk (SMRW) model for probabilistic comparison of large-scale networks; (2) develop efficient algorithms for querying and aligning biological networks; (3) apply the developed algorithms to identify novel biological pathways and investigate their functions and their detailed mechanisms.Broader Impact: The research activities in this project are closely integrated with a comprehensive educational plan, whose overall goal lies in enhancing students? learning experience through the integration of research and education. This goal is translated into a three-part educational plan: (1) develop a concept inventory (CI) for genomic signal processing and computational biology (called the CIGSP); (2) shift a graduate-level course on ?Probabilistic Graphical Models? to a problem-based format; (3) design a new undergraduate course on Probabilistic Models for Network Biology based on proven and emerging pedagogical approaches. The new concept inventory CIGSP will provide a valuable diagnosis/assessment tool for enhancing education in genomic signal processing and computational biology, and it will be used in the PI?s courses, to design measurable educational objectives and evaluate the learning outcomes.
最近出现的用于测量分子相互作用的高通量技术已经产生了大量的生物网络,这使得对复杂生物有机体的系统研究成为可能。由于具有关键功能的生物通路通常在不同的生物体中是保守的,因此对这些网络的比较分析可以为研究生物网络的组织,以及追踪新的通路和研究它们的功能提供一个很好的方法。智力优势:本计划旨在发展比较网络分析的坚实数学框架,并设计比较基因组尺度生物网络的创新技术。主要研究目标包括:(1)建立用于大规模网络概率比较的多状态半马尔可夫随机漫步(SMRW)模型;(2)开发查询和对齐生物网络的高效算法;(3)应用开发的算法识别新的生物通路,并研究其功能和详细机制。更广泛的影响:该项目的研究活动与一个全面的教育计划紧密结合,其总体目标是提高学生的能力。通过研究和教育的结合来学习经验。这一目标被转化为一个由三部分组成的教育计划:(1)为基因组信号处理和计算生物学(称为CIGSP)开发一个概念清单(CI);(2)将研究生水平的课程转移到?概率图形模型?以问题为基础的形式;(3)基于成熟的和新兴的教学方法,设计一门新的网络生物学概率模型本科课程。新概念目录CIGSP将为加强基因组信号处理和计算生物学的教育提供有价值的诊断/评估工具,并将用于PI?设计可衡量的教育目标,并评估学习成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Byung-Jun Yoon其他文献

Erratum to: Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach
  • DOI:
    10.1186/1471-2164-11-373
  • 发表时间:
    2010-06-11
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Ying Wang;Vinayak Brahmakshatriya;Huifeng Zhu;Blanca Lupiani;Sanjay M Reddy;Byung-Jun Yoon;Preethi H Gunaratne;Jong Hwan Kim;Rui Chen;Ashley L Benham;Junjun Wang;Huaijun Zhou
  • 通讯作者:
    Huaijun Zhou
Correction to: Effect of Aging on Pitting Corrosion Resistance of 21Cr Lean Duplex Stainless Steel with Different Molybdenum Contents

Byung-Jun Yoon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Byung-Jun Yoon', 18)}}的其他基金

Elements: Software: Autonomous, Robust, and Optimal In-Silico Experimental Design Platform for Accelerating Innovations in Materials Discovery
要素:软件:用于加速材料发现创新的自主、稳健和优化的计算机实验设计平台
  • 批准号:
    1835690
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC 2016)
计算网络生物学国际研讨会:建模、分析和控制 (CNB-MAC 2016)
  • 批准号:
    1649426
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Theory and Algorithms for Learning with Frozen Pretrained Models
职业:使用冻结的预训练模型进行学习的理论和算法
  • 批准号:
    2339978
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
  • 批准号:
    2336469
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Interpretable and Robust Machine Learning Models: Analysis and Algorithms
职业:可解释且稳健的机器学习模型:分析和算法
  • 批准号:
    2239787
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Deep Neural Networks That Can See Shape From Images: Models, Algorithms, and Applications
职业:可以从图像中看到形状的深度神经网络:模型、算法和应用
  • 批准号:
    2239977
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Temporal Network Analysis: Models, Algorithms, and Applications
职业:时态网络分析:模型、算法和应用
  • 批准号:
    2236789
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Towards Harnessing the Motility of Microorganisms: Fast Algorithms, Data-Driven Models, and 3D Interactive Visual Computing
职业:利用微生物的运动性:快速算法、数据驱动模型和 3D 交互式视觉计算
  • 批准号:
    2408964
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Models and Algorithms for Strategic Conservation Planning
职业:战略保护规划的模型和算法
  • 批准号:
    2308687
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: New Algorithms and Models for Turbulence in Incompressible Fluids
职业:不可压缩流体湍流的新算法和模型
  • 批准号:
    2143331
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Mathematical Models and Algorithms for Decentralized Optimization in Complex Multi-agent Networks
职业:推进复杂多智能体网络中分散优化的数学模型和算法
  • 批准号:
    2323159
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Towards Harnessing the Motility of Microorganisms: Fast Algorithms, Data-Driven Models, and 3D Interactive Visual Computing
职业:利用微生物的运动性:快速算法、数据驱动模型和 3D 交互式视觉计算
  • 批准号:
    2146191
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了