CAREER: A Parallel Computational Framework of Multiscale Geometric Modeling and Mesh Generation for Cardiac Biomechanics Application
职业:心脏生物力学应用的多尺度几何建模和网格生成的并行计算框架
基本信息
- 批准号:1149591
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overall goal of this CAREER project is to establish a novel parallel computational framework of multiscale geometric modeling and mesh generation that can be applied to cardiac biomechanics applications. This capability will enable accurate, stable, efficient simulations of many biological processes such as calcium (Ca2+) mediated signaling, excitation-contraction coupling and energy metabolism in cardiac muscle cells, and lead to great advances in cardiac biomechanics. In cardiac muscle cells, Ca2+ is best known for its role in contraction activation. Alterations in Ca2+ distributions are now recognized to be the primary mechanisms of cardiac dysfunction in a diverse range of common pathologies including cardiac arrhythmias and hypertrophy. To predict and analyze how Ca2+ dynamics and cardiac excitation-contraction coupling are regulated, modeling of realistic geometries of large, complicated t-tubule network and associated protein complexes is needed. However, previous studies have been limited to simplified geometries. In this project, the PI focuses on 1) multiscale geometric modeling for protein complexes starting from atomic resolution data in the Protein Data Bank; 2) parallel mesh generation with topology ambiguity resolved and curvature-driven quality improvement; and 3) model validation in adaptive finite element analysis of Ca2+ signaling in ventricular myocytes with complicated realistic geometry. To handle such large, complicated systems, multicore parallel meshing toolkits will be developed and encapsulated with the simulation software. The proposed research will attain the highest degree of accuracy, efficiency and robustness in model development and simulation. It will significantly advance predictive capability in cardiac applications, and the understanding of anatomical and physiological properties at molecular and cellular scales. This parallel computational infrastructure can also be used for other complicated systems, providing engineers and scientists with novel technologies to construct accurate computer models. Furthermore, this interdisciplinary project will integrate research and education via novel educational tool and curriculum development as well as outreach activities. Students will interact with collaborative institutions to gain firsthand experience of real issues. Women, minority groups and high school students will be included in the proposed research and education activities through CMU's K-12 Programs. Education activities will be assessed in conjunction with CMU's Eberly Center for Teaching Excellence.
这个CAREER项目的总体目标是建立一个新的并行计算框架的多尺度几何建模和网格生成,可以应用到心脏生物力学的应用。 这种能力将能够准确,稳定,有效地模拟许多生物过程,如钙(Ca 2+)介导的信号传导,心肌细胞中的兴奋-收缩偶联和能量代谢,并导致心脏生物力学的巨大进步。 在心肌细胞中,Ca 2+最为人所知的是其在收缩激活中的作用。 Ca 2+分布的改变现在被认为是各种常见病理(包括心律失常和肥大)中心功能不全的主要机制。 为了预测和分析Ca 2+动力学和心脏兴奋-收缩耦合是如何调节的,需要对大型复杂的t-微管网络和相关蛋白质复合物的真实几何形状进行建模。 然而,以前的研究仅限于简化的几何形状。 在该项目中,PI专注于1)从蛋白质数据库中的原子分辨率数据开始的蛋白质复合物的多尺度几何建模; 2)并行网格生成,解决拓扑模糊性和曲率驱动的质量改进;以及3)具有复杂现实几何形状的心室肌细胞中Ca 2+信号的自适应有限元分析中的模型验证。 为了处理这样的大型,复杂的系统,多核并行网格工具包将开发和封装的仿真软件。建议的研究将达到最高程度的准确性,效率和鲁棒性的模型开发和仿真。 它将大大提高心脏应用的预测能力,以及在分子和细胞尺度上对解剖和生理特性的理解。 这种并行计算基础设施也可用于其他复杂系统,为工程师和科学家提供构建精确计算机模型的新技术。 此外,这个跨学科项目将通过新的教育工具和课程开发以及推广活动将研究和教育结合起来。 学生将与合作机构进行互动,以获得真实的问题的第一手经验。 妇女、少数群体和高中生将通过CMU的K-12方案被纳入拟议的研究和教育活动。 教育活动将与CMU的Eberly卓越教学中心一起进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongjie Zhang其他文献
Effects of Dietary Factors on the Pharmacokinetics of 58Fe-labeled Hemin After Oral Administration in Normal Rats and the Iron-deficient Rats
饮食因素对58Fe标记氯化血红素在正常大鼠和缺铁大鼠口服后药动学的影响
- DOI:
10.1007/s12011-013-9654-3 - 发表时间:
2013 - 期刊:
- 影响因子:3.9
- 作者:
Yongjie Zhang;Di Zhao;Jie Xu;Chunxiang Xu;Can Dong;Qingwang Liu;Shuhua Deng;Jie Zhao;Wei Zhang;Xijing Chen - 通讯作者:
Xijing Chen
Characterization of Preclinical Pharmacokinetic Properties and Prediction of Human PK Using a Physiologically Based Pharmacokinetic Model for a Novel Anti-Arrhythmic Agent Sulcardine Sulfate
使用基于生理学的药代动力学模型表征新型抗心律失常药物硫酸磺卡定的临床前药代动力学特性并预测人体 PK
- DOI:
10.1007/s11095-021-03128-3 - 发表时间:
2021 - 期刊:
- 影响因子:3.7
- 作者:
Chang Ren;Yao Wang;Mei Zhang;Dexuan Kong;Chen Ning;Yujie Cheng;Y. Bian;Mengqi Sun;Shengdi Su;Yucong Wang;Yongjie Zhang;Yang Lu;Ning Li;Di Zhao;Xijing Chen - 通讯作者:
Xijing Chen
Calibration of Mars Energetic Particle Analyzer (MEPA)
火星高能粒子分析仪 (MEPA) 的校准
- DOI:
10.26464/epp2020055 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Tang Shuwen;Yi Wang;Zhao Hongyun;F. Fang;Qian Yi;Yongjie Zhang;Y. Haibo;Cunhui Li;Q. Fu;J. Kong;Hu Xiangyu;H. Su;Zhiyu Sun;Yu;BaoMing Zhang;Yu Sun;Sun Zhipeng - 通讯作者:
Sun Zhipeng
Investigation of the role of organic cation transporter 2 (OCT2) in the renal transport of guanfacine, a selective α2A-adrenoreceptor agonist
研究有机阳离子转运蛋白 2 (OCT2) 在选择性 α2A-肾上腺素受体激动剂胍法辛肾转运中的作用
- DOI:
10.3109/00498254.2014.949904 - 发表时间:
2015 - 期刊:
- 影响因子:1.8
- 作者:
Xiaonan Li;Xiaolin Sun;Jia;Yang Lu;Yongjie Zhang;Chunfeng Wang;Junxiu Li;Qing Zhang;Di Zhao;Xijing Chen - 通讯作者:
Xijing Chen
A review on mechanical properties and simulation methods of stitched composites
缝合复合材料力学性能及模拟方法综述
- DOI:
10.1088/1742-6596/2472/1/012008 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Lei Shi;Yongjie Zhang - 通讯作者:
Yongjie Zhang
Yongjie Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongjie Zhang', 18)}}的其他基金
Modeling and analysis of material transport in complex geometry of neurons
神经元复杂几何形状中物质传输的建模和分析
- 批准号:
1804929 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Participant Support for the 20th International Meshing Roundtable; Paris, France; October 23-26, 2011
第20届国际网格圆桌会议参与者支持;
- 批准号:
1126378 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
强流低能加速器束流损失机理的Parallel PIC/MCC算法与实现
- 批准号:11805229
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
- 批准号:
2243706 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
- 批准号:
2243704 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
- 批准号:
2243703 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
- 批准号:
2243705 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Massively parallel computational methods for combined-modes heat transfer with applications to concentrated solar power technologies
组合模式传热的大规模并行计算方法及其在聚光太阳能发电技术中的应用
- 批准号:
RGPIN-2016-04927 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Toward Easy Parallel Programming for Computational Fluid Dynamics
面向计算流体动力学的简单并行编程
- 批准号:
2438840 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Studentship
Massively parallel computational methods for combined-modes heat transfer with applications to concentrated solar power technologies
组合模式传热的大规模并行计算方法及其在聚光太阳能发电技术中的应用
- 批准号:
RGPIN-2016-04927 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Unification of computational statistics and measurement technology by massively parallel machine
大规模并行机统一计算统计和测量技术
- 批准号:
19H04125 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Massively parallel computational methods for combined-modes heat transfer with applications to concentrated solar power technologies
组合模式传热的大规模并行计算方法及其在聚光太阳能发电技术中的应用
- 批准号:
RGPIN-2016-04927 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
CAREER: A Parallel and Efficient Computational Framework for Unified Volumetric Meshing in Large-Scale 3D/4D Anisotropy
职业生涯:大规模 3D/4D 各向异性中统一体积网格划分的并行高效计算框架
- 批准号:
1845962 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant