Highly multidimensional thermodynamic property prediction for chemical design using atomistic simulations

使用原子模拟进行化学设计的高度多维热力学性质预测

基本信息

  • 批准号:
    1152786
  • 负责人:
  • 金额:
    $ 41.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-05-15 至 2016-04-30
  • 项目状态:
    已结题

项目摘要

Michael Shirts of the University of Virginia is supported by an award from the Chemical Theory, Models and Computational Methods program to develop methods to efficiently predict the thermodynamic properties of large numbers of chemical species and alternative models to describe these species using advanced statistical and simulation techniques. Predicting thermodynamic properties for a given chemical system via physical modeling is fundamentally a statistical estimation problem, but many potentially useful statistical techniques are not currently used in molecular simulation. This project applies several existing statistical techniques to the problem of thermodynamic property estimation for the first time and explores several novel simulation techniques. Most significantly, the project expands the ability of existing techniques for sampling from and computing thermodynamic properties of a few states to the exponentially large multidimensional spaces required for large-scale chemical property prediction and design.Improved capabilities to optimize thermodynamic properties over chemical space would have impact in drug and materials design. Such capabilities would make exploring the properties of new proteins, structured heteropolymers, and other chemically complex heterogeneous systems much easier, potentially revealing new structural and functional frameworks that could not otherwise be discovered. For example, the proposed techniques would make it possible to optimize small molecules to have the tightest possible binding affinity across all single-point mutations of a given viral protein. It would also allow researchers to rapidly identify which proposed molecular models best describe natural chemical systems. The methods in this proposal will be implemented in GROMACS, a widely-used open source package of molecular dynamics software tools, making them accessible to large numbers of researchers. The findings and tools will be incorporated into Alchemistry.org, a web portal for sharing techniques, examples, and methods for free energy computations in classical molecular systems.
弗吉尼亚大学的Michael Shirts获得了化学理论、模型和计算方法项目的奖励,他开发了有效预测大量化学物质的热力学性质的方法,以及使用先进的统计和模拟技术来描述这些物质的替代模型。通过物理建模来预测给定化学系统的热力学性质基本上是一个统计估计问题,但许多潜在有用的统计技术目前尚未用于分子模拟。本项目首次将现有的几种统计技术应用于热力学性质估计问题,并探索了几种新的模拟技术。最重要的是,该项目扩展了现有技术的能力,从一些状态的热力学性质取样和计算到大规模化学性质预测和设计所需的指数大的多维空间。优化化学空间热力学性质的能力的提高将对药物和材料设计产生影响。这种能力将使探索新蛋白质、结构异聚物和其他化学复杂的非均相系统的性质变得更加容易,潜在地揭示了其他方式无法发现的新结构和功能框架。例如,所提出的技术将使优化小分子成为可能,使其在给定病毒蛋白的所有单点突变中具有尽可能紧密的结合亲和力。它还将使研究人员能够迅速确定哪种提出的分子模型最能描述自然化学系统。本提案中的方法将在GROMACS中实现,GROMACS是一个广泛使用的开源分子动力学软件工具包,使其可供大量研究人员使用。这些发现和工具将被纳入Alchemistry.org,一个分享经典分子系统中自由能计算的技术、例子和方法的门户网站。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Shirts其他文献

Frustration enables the liquid-liquid phase separation of nonspecifically interacting coiled-coil proteins
  • DOI:
    10.1016/j.bpj.2023.11.2717
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Dominique Ramirez;Loren Hough;Michael Shirts
  • 通讯作者:
    Michael Shirts

Michael Shirts的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Shirts', 18)}}的其他基金

Collaborative Research: CyberTraining: Implementation: Medium: Establishing Sustainable Ecosystem for Computational Molecular Science Training and Education
合作研究:网络培训:实施:中:建立计算分子科学培训和教育的可持续生态系统
  • 批准号:
    2118174
  • 财政年份:
    2021
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Standard Grant
Collaborative Research: NSCI Framework: Software: SCALE-MS - Scalable Adaptive Large Ensembles of Molecular Simulations
合作研究:NSCI 框架:软件:SCALE-MS - 可扩展自适应大型分子模拟集成
  • 批准号:
    1835720
  • 财政年份:
    2019
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Standard Grant
D3SC: EAGER: Collaborative Research: A probabilistic framework for automated force field parameterization from experimental datasets
D3SC:EAGER:协作研究:根据实验数据集自动进行力场参数化的概率框架
  • 批准号:
    1738975
  • 财政年份:
    2017
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Standard Grant
CAREER: Understanding the thermodynamics of crystalline materials using advanced molecular simulation sampling methods
职业:使用先进的分子模拟采样方法了解晶体材料的热力学
  • 批准号:
    1639105
  • 财政年份:
    2016
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Standard Grant
CAREER: Understanding the thermodynamics of crystalline materials using advanced molecular simulation sampling methods
职业:使用先进的分子模拟采样方法了解晶体材料的热力学
  • 批准号:
    1351635
  • 财政年份:
    2014
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Standard Grant

相似国自然基金

含重过渡与稀土元素的多金属配合物的磁、光性质研究
  • 批准号:
    20371027
  • 批准年份:
    2003
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Liquid Crystal-Templated Sequential Infiltration Synthesis of Hybrid Organic/Inorganic Materials with Multidimensional Chiral Structures
职业:具有多维手性结构的有机/无机杂化材料的液晶模板连续渗透合成
  • 批准号:
    2337740
  • 财政年份:
    2024
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Continuing Grant
Interactions between learning and non-learning plasticity in the beadlet sea anenome Actinia equina: A multidimensional reaction norm approach.
珠状海葵海葵中学习和非学习可塑性之间的相互作用:一种多维反应规范方法。
  • 批准号:
    BB/Y002474/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Research Grant
CRII: CSR: Enhancing Eventual Data Consistency in Multidimensional Scientific Computing through Lightweight In-Memory Distributed Ledger System.
CRII:CSR:通过轻量级内存分布式账本系统增强多维科学计算中的最终数据一致性。
  • 批准号:
    2348330
  • 财政年份:
    2024
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Standard Grant
Adaptive Tensor Network Decomposition for Multidimensional Machine Learning Theory and Applications
多维机器学习理论与应用的自适应张量网络分解
  • 批准号:
    24K20849
  • 财政年份:
    2024
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
MERGE - Measuring what matters: Improving usability and accessibility of policy frameworks and indicators for multidimensional well-being through collaboration
MERGE - 衡量重要的事情:通过协作提高多维福祉政策框架和指标的可用性和可及性
  • 批准号:
    10092245
  • 财政年份:
    2024
  • 资助金额:
    $ 41.4万
  • 项目类别:
    EU-Funded
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
  • 批准号:
    10823917
  • 财政年份:
    2024
  • 资助金额:
    $ 41.4万
  • 项目类别:
Centrally-linked longitudinal peripheral biomarkers of AD in multi-ethnic populations
多种族人群中 AD 的中心连锁纵向外周生物标志物
  • 批准号:
    10555723
  • 财政年份:
    2023
  • 资助金额:
    $ 41.4万
  • 项目类别:
A Study on the Multidimensional Evaluation of the Effectiveness and Equalization of Psychoeducation on Complex Trauma
复杂创伤心理教育有效性及均衡性多维评价研究
  • 批准号:
    23K02998
  • 财政年份:
    2023
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New frontiers in reverse mathematics with the multidimensional perspective
多维视角逆向数学新领域
  • 批准号:
    23K03193
  • 财政年份:
    2023
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multidimensional investigation of cellular dynamics and lineage relationships in the vertebrate neural tube
脊椎动物神经管细胞动力学和谱系关系的多维研究
  • 批准号:
    EP/X031225/1
  • 财政年份:
    2023
  • 资助金额:
    $ 41.4万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了