Conference on "Symmetries of Differential Equations: Frames, Invariants and Applications"
“微分方程的对称性:框架、不变量和应用”会议
基本信息
- 批准号:1157714
- 负责人:
- 金额:$ 4.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-01 至 2013-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant provides travel support for graduate students, postdocs, and invited lecturers to participate in the Conference on "Symmetries of Differential Equations: Frames, Invariants and Applications" to be held at the School of Mathematics, University of Minnesota, May 17-19, 2012. The general conference theme is inspired by the lifetime research achievements of Professor Peter Olver, but focus will be on current advances, promising directions, and novel applications. The main topics addressed are symmetries of differential equations and variational problems, with special emphasis on moving frames, Cartan theory of differential forms and invariant theory. Also Hamiltonian systems and integrable systems including solitons will be treated, as well as applications of symmetry based methods to image processing, fluid mechanics and elasticity. The organizing committee is: Niky Kamran (Mathematics, McGill University), Gloria Mari Beffa (Mathematics, University of Wisconsin), Guillermo R. Sapiro (Electrical and Computer Engineering, University of Minnesota), and Willard Miller, Jr, (Mathematics, University of Minnesota). Detailed information is available on the website http://math.umn.edu/conferences/olver/ and results of the meeting, including abstracts, slides and a panel discussion, will also be posted there. In conjunction with the conference the on line journal SIGMA will publish a special issue entitled ``Symmetries of Differential Equations: Frames, Invariants and Applications'' with the conference organizers as guest editors, http://www.emis.de/journals/SIGMA/SDE2012.html.The general theme of the conference is the exploitation of symmetries of mathematical and physical systems to deduce properties of these systems. More specifically, most physical theories are expressed in terms of differential equations and the mathematical symmetries of these equations can be exploited to reach important conclusions about the systems that obey the equations. The meeting comes at a propitious time - an explosion of new results and new methods in symmetry analysis, with applications ranging over geometry, differential equations, computer vision, numerical analysis, mechanics, and physics, make this an ideal time to assemble the leading experts, and promising younger researchers to assess the rapid advances in the area, reach a consensus on what are the most important problems, and evaluate the most promising directions for further advance. We expect the conference to be a major event in the history of this research area.
该补助金为研究生,博士后提供旅行支持,并邀请讲师参加将于2012年5月17日至19日在明尼苏达大学数学学院举行的“微分方程对称性:框架,不变量和应用”会议。大会主题的灵感来自Peter Olver教授的终身研究成就,但重点将放在当前的进展,有前途的方向和新的应用上。讨论的主要议题是微分方程和变分问题的对称性,特别强调移动框架,微分形式和不变理论的嘉当理论。此外,哈密顿系统和可积系统,包括孤子将被处理,以及应用对称性为基础的方法,以图像处理,流体力学和弹性。组委会是:尼基·卡姆兰(数学,麦吉尔大学)、格洛丽亚马里·贝法(数学,威斯康星州大学)、吉列尔莫·R·Sapiro(电气和计算机工程,明尼苏达大学)和Willard米勒,Jr(数学,明尼苏达大学)。详细资料可在网站http://math.umn.edu/conferences/olver/上查阅,会议结果,包括摘要、幻灯片和小组讨论也将张贴在该网站上。在会议的同时,在线杂志SIGMA将出版一个题为“微分方程的对称性:框架,不变量和应用”的特刊,会议组织者作为客座编辑,http://www.emis.de/journals/SIGMA/SDE2012.html.The会议的总主题是利用数学和物理系统的对称性来推导这些系统的属性。更具体地说,大多数物理理论都是用微分方程来表达的,这些方程的数学对称性可以用来得出关于服从这些方程的系统的重要结论。这次会议是在一个有利的时间-爆炸的新成果和新方法的对称性分析,与应用范围超过几何,微分方程,计算机视觉,数值分析,力学和物理学,使这一理想的时间来聚集领先的专家,并有前途的年轻研究人员评估该地区的快速发展,达成共识,什么是最重要的问题,并评估最有前途的进一步发展方向。我们希望这次会议将成为这一研究领域历史上的一件大事。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Willard Miller其他文献
Superintegrability and higher order integrals for quantum systems
量子系统的超可积性和高阶积分
- DOI:
10.1088/1751-8113/43/26/265205 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
E. Kalnins;J. Kress;Willard Miller - 通讯作者:
Willard Miller
Symmetry and separation of variables for the Helmholtz and Laplace equations
亥姆霍兹和拉普拉斯方程的对称性和变量分离
- DOI:
- 发表时间:
1976 - 期刊:
- 影响因子:0.8
- 作者:
C. Boyer;E. Kalnins;Willard Miller - 通讯作者:
Willard Miller
Special function models of indecomposable $sl(2)$ representations: The Laguerre Case
不可分解的 $sl(2)$ 表示的特殊函数模型:拉盖尔案例
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S'ebastien Bertrand;I. Marquette;Willard Miller;Sarah Post - 通讯作者:
Sarah Post
Electromagnetic waves in Kerr geometry
克尔几何中的电磁波
- DOI:
10.1098/rspa.1986.0107 - 发表时间:
1986 - 期刊:
- 影响因子:0
- 作者:
E. Kalnins;Willard Miller;G. C. Williams - 通讯作者:
G. C. Williams
Willard Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Willard Miller', 18)}}的其他基金
30th International Colloquium on Group Theoretical Methods in Physics, July 14-18, 2014
第 30 届物理群理论方法国际学术研讨会,2014 年 7 月 14-18 日
- 批准号:
1356117 - 财政年份:2014
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
Fourth International Symposium: Quantum Theory and Symmetries
第四届国际研讨会:量子理论与对称性
- 批准号:
0507870 - 财政年份:2005
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
XXV International Colloquium on Group Theoretical Methods in Physics
第二十五届物理学群论方法国际学术讨论会
- 批准号:
0404793 - 财政年份:2004
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
Foundations of Computational Mathematics Conference, August 5 - 14, 2002
计算数学基础会议,2002 年 8 月 5 日至 14 日
- 批准号:
0136607 - 财政年份:2002
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
IMA - Scientific Computing Equipment Acquisition
IMA - 科学计算设备采购
- 批准号:
9872020 - 财政年份:1998
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
Support for US participants in Advanced Study Institute on INTEGRABLE SYSTEMS: FROM CLASSICAL TO QUANTUM
支持可集成系统高级研究所的美国参与者:从经典到量子
- 批准号:
9872770 - 财政年份:1998
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
Institute for Mathematics and Its Applications
数学及其应用研究所
- 批准号:
9701653 - 财政年份:1997
- 资助金额:
$ 4.47万 - 项目类别:
Continuing Grant
Mathematical Sciences: Harmonic Analysis Special Functions and Separation of Variables
数学科学:调和分析特殊函数和变量分离
- 批准号:
9400533 - 财政年份:1994
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
Mathematical Sciences: Symmetries and Integrability of Difference Equations
数学科学:差分方程的对称性和可积性
- 批准号:
9402625 - 财政年份:1994
- 资助金额:
$ 4.47万 - 项目类别:
Standard Grant
Mathematical Sciences: Institute for Mathematics and its Applications
数学科学:数学及其应用研究所
- 批准号:
9023978 - 财政年份:1992
- 资助金额:
$ 4.47万 - 项目类别:
Continuing Grant
相似海外基金
Symmetries and Differential Equations
对称性和微分方程
- 批准号:
RGPIN-2016-03705 - 财政年份:2022
- 资助金额:
$ 4.47万 - 项目类别:
Discovery Grants Program - Individual
Symmetries and Differential Equations
对称性和微分方程
- 批准号:
RGPIN-2016-03705 - 财政年份:2021
- 资助金额:
$ 4.47万 - 项目类别:
Discovery Grants Program - Individual
Symmetries and Differential Equations
对称性和微分方程
- 批准号:
RGPIN-2016-03705 - 财政年份:2019
- 资助金额:
$ 4.47万 - 项目类别:
Discovery Grants Program - Individual
Symmetries and Differential Equations
对称性和微分方程
- 批准号:
RGPIN-2016-03705 - 财政年份:2018
- 资助金额:
$ 4.47万 - 项目类别:
Discovery Grants Program - Individual
Symmetries and Differential Equations
对称性和微分方程
- 批准号:
RGPIN-2016-03705 - 财政年份:2017
- 资助金额:
$ 4.47万 - 项目类别:
Discovery Grants Program - Individual
Symmetries and differential equations
对称性和微分方程
- 批准号:
7157-2011 - 财政年份:2015
- 资助金额:
$ 4.47万 - 项目类别:
Discovery Grants Program - Individual
Symmetries and Differential Equations
对称性和微分方程
- 批准号:
482424-2015 - 财政年份:2015
- 资助金额:
$ 4.47万 - 项目类别:
University Undergraduate Student Research Awards
Symmetries and differential equations
对称性和微分方程
- 批准号:
7157-2011 - 财政年份:2014
- 资助金额:
$ 4.47万 - 项目类别:
Discovery Grants Program - Individual
Reduction of symmetries, differential spaces and geometric quanization
减少对称性、微分空间和几何量化
- 批准号:
8091-2010 - 财政年份:2014
- 资助金额:
$ 4.47万 - 项目类别:
Discovery Grants Program - Individual
Symmetries and differential equations
对称性和微分方程
- 批准号:
7157-2011 - 财政年份:2013
- 资助金额:
$ 4.47万 - 项目类别:
Discovery Grants Program - Individual