FRG: Collaborative Research: In and Around Theory X

FRG:协作研究:X 理论及其周边

基本信息

  • 批准号:
    1159468
  • 负责人:
  • 金额:
    $ 13.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

Over the last generation the four-dimensional classical self-dual Yang-Mills equations and their dimensional reductions have had profound consequences for algebraic geometry, differential geometry, low-dimensional topology, integrable systems, and nonlinear PDE. Now a family of six-dimensional quantum field theories is emerging as an object of acute mathematical interest. This Focused Research Group brings together researchers working in diverse parts of mathematics and physics to study these theories. They originally arose as limits of string theories and are usually called 'superconformal (2,0)-theories' to call attention to their symmetries. The simpler appellation 'Theory X' emphasizes how little is known. The projects undertaken here have two overall goals. First, we will make inroads on the structure of Theory X by applying the detailed and profound mathematical understanding of topological and conformal quantum field theories obtained over the past 25 years. Second, we will use expected properties of Theory X and its compactifications to lower dimensions to deduce new conjectures and new organizing principles in geometric representation theory. The rapidly developing web of interactions between the six-dimensional quantum Theory X and a host of central topics in twenty-first century geometry, topology, and geometric representation theory indicates that we are seeing the beginnings of a new revolution, one in which Theory X plays the dominant physical role. Progress towards unraveling its structure and its consequences will have broad ramifications.Physics has long fueled developments in mathematics, and the past 30 years have been a particularly fruitful period. The depth of mathematics which enters fundamental physical theories has steadily intensified, and at the same time the structure and predictions of these theories have had increasingly profound impacts on mathematics. This project is one of many efforts to mine this intellectually fertile mix of ideas. Our pursuit of Theory X will inevitably illuminate a much broader circle of ideas and contribute to the mathematical understanding of contemporary physics. The work of past generations at the mathematics-physics interface fuels the modern world: our computers, GPS systems, transportation, sophisticated medical tools, and much more owe their existence to basic research in this area which stretches back well over a century. While we cannot predict how current basic research will impact the future, we can say with certainty that the effect will be far-reaching.
在上一代中,四维经典自对偶杨-米尔斯方程及其降维对代数几何、微分几何、低维拓扑、可积系统和非线性偏微分方程产生了深远的影响。 现在,一系列六维量子场论正在成为引起数学兴趣的对象。 这个重点研究小组汇集了数学和物理学不同领域的研究人员来研究这些理论。 它们最初是作为弦理论的极限而出现的,通常被称为“超共形 (2,0) 理论”,以引起人们对其对称性的关注。 更简单的名称“X 理论”强调了人们所知甚少。 这里开展的项目有两个总体目标。 首先,我们将利用过去25年来对拓扑和共形量子场论所获得的详细而深刻的数学理解,对X理论的结构进行深入研究。 其次,我们将利用X理论的预期性质及其对低维的压缩来推导出几何表示理论中的新猜想和新组织原理。 六维量子理论 X 与二十一世纪几何学、拓扑学和几何表示理论中的许多中心主题之间快速发展的相互作用网络表明,我们正在看到一场新革命的开始,其中理论 X 发挥着主导的物理作用。阐明其结构及其后果的进展将产生广泛的影响。长期以来,物理学一直推动着数学的发展,过去 30 年是一个特别富有成果的时期。 数学进入基础物理理论的深度不断加深,同时这些理论的结构和预测对数学的影响也越来越深远。 这个项目是挖掘这种智力丰富的想法组合的众多努力之一。 我们对 X 理论的追求将不可避免地阐明更广泛的思想领域,并有助于对当代物理学的数学理解。 过去几代人在数学与物理接口方面的工作为现代世界提供了动力:我们的计算机、GPS 系统、交通、先进的医疗工具等等,它们的存在都归功于这一领域的基础研究,其历史可以追溯到一个多世纪前。 虽然我们无法预测当前的基础研究将如何影响未来,但我们可以肯定地说,其影响将是深远的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Nevins其他文献

Thomas Nevins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Nevins', 18)}}的其他基金

Conference on Enumerative Geometry, Mirror Symmetry, and Physics
枚举几何、镜像对称和物理学会议
  • 批准号:
    1736228
  • 财政年份:
    2017
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Algebraic Geometry and Representation Theory in Genus One
属一中的代数几何与表示论
  • 批准号:
    0757987
  • 财政年份:
    2008
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Algebraic Geometry of Integrable Systems and Singular Varieties
可积系统和奇异簇的代数几何
  • 批准号:
    0500221
  • 财政年份:
    2005
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
Moduli Spaces in Algebraic and Differential Geometry
代数和微分几何中的模空间
  • 批准号:
    0102020
  • 财政年份:
    2001
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Fellowship Award

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了