FRG: Collaborative Research: In and Around Theory X

FRG:协作研究:X 理论及其周边

基本信息

  • 批准号:
    1160328
  • 负责人:
  • 金额:
    $ 32.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

Over the last generation the four-dimensional classical self-dual Yang-Mills equations and their dimensional reductions have had profound consequences for algebraic geometry, differential geometry, low-dimensional topology, integrable systems, and nonlinear PDE. Now a family of six-dimensional quantum field theories is emerging as an object of acute mathematical interest. This Focused Research Group brings together researchers working in diverse parts of mathematics and physics to study these theories. They originally arose as limits of string theories and are usually called 'superconformal (2,0)-theories' to call attention to their symmetries. The simpler appellation 'Theory X' emphasizes how little is known. The projects undertaken here have two overall goals. First, we will make inroads on the structure of Theory X by applying the detailed and profound mathematical understanding of topological and conformal quantum field theories obtained over the past 25 years. Second, we will use expected properties of Theory X and its compactifications to lower dimensions to deduce new conjectures and new organizing principles in geometric representation theory. The rapidly developing web of interactions between the six-dimensional quantum Theory X and a host of central topics in twenty-first century geometry, topology, and geometric representation theory indicates that we are seeing the beginnings of a new revolution, one in which Theory X plays the dominant physical role. Progress towards unraveling its structure and its consequences will have broad ramifications.Physics has long fueled developments in mathematics, and the past 30 years have been a particularly fruitful period. The depth of mathematics which enters fundamental physical theories has steadily intensified, and at the same time the structure and predictions of these theories have had increasingly profound impacts on mathematics. This project is one of many efforts to mine this intellectually fertile mix of ideas. Our pursuit of Theory X will inevitably illuminate a much broader circle of ideas and contribute to the mathematical understanding of contemporary physics. The work of past generations at the mathematics-physics interface fuels the modern world: our computers, GPS systems, transportation, sophisticated medical tools, and much more owe their existence to basic research in this area which stretches back well over a century. While we cannot predict how current basic research will impact the future, we can say with certainty that the effect will be far-reaching.
在过去的一代中,四维经典的自对偶Yang-Mills方程及其降维对代数几何、微分几何、低维拓扑、可积系统和非线性偏微分方程组都产生了深远的影响。现在,一系列六维量子场理论正在成为人们强烈数学兴趣的对象。这个专注的研究小组聚集了数学和物理学不同领域的研究人员来研究这些理论。它们最初是作为弦理论的极限出现的,通常被称为“超共形(2,0)理论”,以引起人们对其对称性的关注。更简单的称呼是“理论X”,它强调的是我们所知的有多少。在这里进行的项目有两个总体目标。首先,我们将通过应用过去25年来对拓扑场和共形量子场理论的详细和深刻的数学理解,在X理论的结构上取得进展。其次,我们将利用理论X的预期性质及其紧致降维来推导几何表示理论中的新猜想和新的组织原则。六维量子理论X与21世纪几何学、拓扑学和几何表示理论中的许多中心主题之间迅速发展的相互作用网络表明,我们正在看到一场新革命的开始,在这场革命中,X理论扮演着主导的物理角色。在解开它的结构及其后果方面的进展将产生广泛的影响。物理学长期以来一直推动着数学的发展,过去30年是特别富有成果的时期。数学进入基本物理理论的深度在稳步加强,同时这些理论的结构和预测对数学产生了越来越深刻的影响。这个项目是挖掘这种智力丰富的想法组合的众多努力之一。我们对X理论的追求将不可避免地照亮更广泛的思想圈子,并有助于对当代物理学的数学理解。过去几代人在数学-物理接口上的工作为现代世界提供了燃料:我们的计算机、GPS系统、交通工具、复杂的医疗工具,以及更多的东西都归功于这一领域的基础研究,这一领域可以追溯到一个多世纪以前。虽然我们无法预测当前的基础研究将如何影响未来,但我们可以肯定地说,影响将是深远的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Constantin Teleman其他文献

Constantin Teleman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Constantin Teleman', 18)}}的其他基金

Gauge theory and Mirror Symmetry
规范理论和镜面对称
  • 批准号:
    1406056
  • 财政年份:
    2014
  • 资助金额:
    $ 32.17万
  • 项目类别:
    Continuing Grant
Groups and Algebraic Structures in Topological Quantum Field Theory
拓扑量子场论中的群和代数结构
  • 批准号:
    1007255
  • 财政年份:
    2010
  • 资助金额:
    $ 32.17万
  • 项目类别:
    Continuing Grant
Structure in Topological Field Theory
拓扑场论中的结构
  • 批准号:
    0709448
  • 财政年份:
    2007
  • 资助金额:
    $ 32.17万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9508944
  • 财政年份:
    1995
  • 资助金额:
    $ 32.17万
  • 项目类别:
    Fellowship Award

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 32.17万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 32.17万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 32.17万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 32.17万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 32.17万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 32.17万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 32.17万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 32.17万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 32.17万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 32.17万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了