Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping
合作研究:反氢生成和捕获的等离子体物理的实验和理论研究
基本信息
- 批准号:1202428
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Last year, antihydrogen was trapped for the first time by the ALPHA collaboration at CERN. By this point hundreds of antiatoms have been trapped for times as long as 1000 s. While this was a remarkable achievement, the ALPHA apparatus is not well configured for most measurements of the properties of antihydrogen, and must be rebuilt to allow laser and better microwave access. Furthermore, the trapping rates, while sufficient to begin studies of the properties of antimatter, are lower than optimal. There are two broad challenges to improving the trapping rate: (1) Understanding the behavior of the positron and antiproton plasmas from which the antihydrogen is synthesized; and (2) Understanding the atomic processes by which positrons and antiprotons recombine. Antihydrogen synthesis lies on the boundary between atomic and plasma physics, and cannot be studied properly without employing tools from both fields. The long term goal of antihydrogen research is to search for differences between the properties of hydrogen and antihydrogen. Such differences might occur between the spectra of the two species. Differences in the spectra could only result from CPT violation. Another place differences might occur is in the gravitational interactions of hydrogen and antihydrogen. Such differences could solve the baryogenesis problem. A third area of potential difference is in the fractional charge of antihydrogen. The net charge of antihydrogen is only known to about 10^-7 relative to the unit charge. Positive results from any of these measurements would completely change our understanding of fundamental particles and fields. The physics issues will be studied with experiments at CERN, with classical trajectory Monte Carlo, molecular dynamics, and 3D PIC codes, and with analytic theory. Some of the questions that will be addressed include: achieving improved (lower) lepton and antiproton temperatures; studying how leptons interact with the background radiation field; studying how leptons interact with resonant cavities; improved plasma diagnostics; and improved mixing of positrons and antiprotons, so that more of the resultant antihydrogen can be held in a very shallow neutral trap. While the motivation for seeking answers to these questions comes from antihydrogen research, many of these questions raise novel and deep issues in plasma and atomic physics. The long-¬term goals of this research address the very basis of our understanding of the world around us. Potentially, it has deep implications on the nature of particle interactions, on the question of matter-¬antimatter symmetry, and on cosmology. At the same time, this research is uniquely visible because the study of antimatter is accessible and fascinating to the public. The trapping of antihydrogen last year was extraordinarily widely noted in the lay and scientific press. Antihydrogen experiments are sufficiently simple that they can be comprehended in their entirety by graduate students. Consequently, they offer students a broad education. Experimentalists learn beam and plasma physics, experimental planning and design, instrumentation, UHV practice, electronics, cryogenics, magnetics and software development. Along with theory development, theorists can make critical contributions to the design, operation, and analysis of the experiments. The relative accessibility of the material makes it easy to integrate undergraduate students into both the experimental and theoretical program. The proposed research includes significant participation by members of underrepresented groups.
去年,CERN 的 ALPHA 合作首次捕获了反氢原子。至此,数百个反原子已被捕获长达 1000 秒。虽然这是一项了不起的成就,但 ALPHA 设备的配置并不适合大多数反氢特性的测量,必须进行重建以允许激光和更好的微波进入。此外,捕获率虽然足以开始研究反物质的特性,但仍低于最佳值。提高捕获率面临两大挑战:(1)了解合成反氢的正电子和反质子等离子体的行为; (2) 了解正电子和反质子重组的原子过程。反氢合成位于原子物理学和等离子体物理学之间的边界,如果不使用这两个领域的工具就无法正确研究。反氢研究的长期目标是寻找氢和反氢性质之间的差异。这种差异可能发生在两个物种的光谱之间。光谱的差异只能是由于 CPT 违规造成的。另一个可能发生差异的地方是氢和反氢的引力相互作用。这种差异可以解决重子发生问题。电势差的第三个区域是反氢的分数电荷。反氢的净电荷相对于单位电荷仅已知约10^-7。任何这些测量的积极结果都将彻底改变我们对基本粒子和场的理解。将通过 CERN 的实验、经典轨迹蒙特卡罗、分子动力学、3D PIC 代码以及分析理论来研究物理问题。将解决的一些问题包括: 提高(降低)轻子和反质子温度;研究轻子如何与背景辐射场相互作用;研究轻子如何与谐振腔相互作用;改进的血浆诊断;并改善正电子和反质子的混合,以便将更多的反氢原子保留在非常浅的中性陷阱中。虽然寻求这些问题答案的动机来自反氢研究,但其中许多问题提出了等离子体和原子物理学中新颖而深刻的问题。这项研究的长期目标是我们理解周围世界的基础。它可能对粒子相互作用的本质、物质-反物质对称性问题以及宇宙学产生深远的影响。同时,这项研究具有独特的可见性,因为反物质的研究对公众来说是容易理解和着迷的。去年捕获反氢原子的事件在普通媒体和科学媒体上引起了广泛关注。反氢实验非常简单,研究生可以完全理解。因此,他们为学生提供广泛的教育。实验人员学习束流和等离子体物理、实验规划和设计、仪器仪表、特高压实践、电子学、低温学、磁学和软件开发。随着理论的发展,理论家可以对实验的设计、操作和分析做出关键贡献。材料的相对可访问性使得本科生很容易融入实验和理论课程。拟议的研究包括代表性不足群体成员的大量参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Ordonez其他文献
Growing a FLOWER: Building a Diagram Unifying Flow and ER Notation for Data Science
种植一朵花:为数据科学构建统一流程和 ER 表示法的图表
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Carlos Ordonez;Robin Varghese;Nguyen Phan;Wojciech Macyna - 通讯作者:
Wojciech Macyna
Role of Polymeric Coating of Gold Nanoparticles in their Transport through Natural Barriers
金纳米粒子的聚合物涂层在其通过自然屏障运输中的作用
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Carlos Ordonez;Shingo Tanaka;Naoko Watanabe and Tamotsu Kozaki - 通讯作者:
Naoko Watanabe and Tamotsu Kozaki
Migration of PEG-Functionalized Model Gold Nanoparticles in Natural Barriers
PEG 功能化模型金纳米粒子在自然屏障中的迁移
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Carlos Ordonez;Shingo Tanaka;Naoko Watanabe and Tamotsu Kozaki - 通讯作者:
Naoko Watanabe and Tamotsu Kozaki
Complicated intra-abdominal infections in a worldwide context: an observational prospective study (CIAOW Study)
- DOI:
10.1186/1749-7922-8-1 - 发表时间:
2013-01-03 - 期刊:
- 影响因子:5.800
- 作者:
Massimo Sartelli;Fausto Catena;Luca Ansaloni;Ernest Moore;Mark Malangoni;George Velmahos;Raul Coimbra;Kaoru Koike;Ari Leppaniemi;Walter Biffl;Zsolt Balogh;Cino Bendinelli;Sanjay Gupta;Yoram Kluger;Ferdinando Agresta;Salomone Di Saverio;Gregorio Tugnoli;Elio Jovine;Carlos Ordonez;Carlos Augusto Gomes;Gerson Alves Pereira;Kuo-Ching Yuan;Miklosh Bala;Miroslav P Peev;Yunfeng Cui;Sanjay Marwah;Sanoop Zachariah;Boris Sakakushev;Victor Kong;Adamu Ahmed;Ashraf Abbas;Ricardo Alessandro Teixeira Gonsaga;Gianluca Guercioni;Nereo Vettoretto;Elia Poiasina;Offir Ben-Ishay;Rafael Díaz-Nieto;Damien Massalou;Matej Skrovina;Ihor Gerych;Goran Augustin;Jakub Kenig;Vladimir Khokha;Cristian Tranà;Kenneth Yuh Yen Kok;Alain Chichom Mefire;Jae Gil Lee;Suk-Kyung Hong;Helmut Alfredo Segovia Lohse;Wagih Ghnnam;Alfredo Verni;Varut Lohsiriwat;Boonying Siribumrungwong;Alberto Tavares;Gianluca Baiocchi;Koray Das;Julien Jarry;Maurice Zida;Norio Sato;Kiyoshi Murata;Tomohisa Shoko;Takayuki Irahara;Ahmed O Hamedelneel;Noel Naidoo;Abdul Rashid Kayode Adesunkanmi;Yoshiro Kobe;AK Attri;Rajeev Sharma;Federico Coccolini;Tamer El Zalabany;Khalid Al Khalifa;Juan Sanjuan;Rita Barnabé;Wataru Ishii - 通讯作者:
Wataru Ishii
Dépendances fonctionnelles et requêtes skyline multidimensionnelles
多维天际线的功能和要求的依赖性
- DOI:
10.3166/isi.20.5.9-26 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
N. Hanusse;Patrick Kamnang Wanko;Sofiane Maabout;Carlos Ordonez - 通讯作者:
Carlos Ordonez
Carlos Ordonez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Ordonez', 18)}}的其他基金
Equilibria of Two Relaxed Plasma Species With One Species Confined by the Space Charge of the Other Species
两种松弛等离子体物质的平衡,其中一种物质受到另一种物质的空间电荷的限制
- 批准号:
1803047 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping
合作研究:反氢生成和捕获的等离子体物理的实验和理论研究
- 批准号:
1500427 - 财政年份:2015
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
III: Small-Collaborative: Efficient Bayesian Model Computation for Large and High Dimensional Data Sets
III:小型协作:大型高维数据集的高效贝叶斯模型计算
- 批准号:
0914861 - 财政年份:2009
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Pan-American Institute of Science and Technology
泛美科学技术研究所
- 批准号:
0936560 - 财政年份:2009
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
EAGER: Efficient Algorithms for Dimensionality Reduction and Clustering Using Disk-Based Matrices
EAGER:使用基于磁盘的矩阵进行降维和聚类的高效算法
- 批准号:
0937562 - 财政年份:2009
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: Conformal Quantum Mechanics---From the Near-Horizon Characterization of Black Hole Thermodynamics to Renormalization and Path Integral Techniques
合作研究:共形量子力学——从黑洞热力学的近地平线表征到重正化和路径积分技术
- 批准号:
0602301 - 财政年份:2006
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Collaborative Research: Renormalization, Path Integrals, and Applications of Conformal Quantum Mechanics, Singular Potentials, and Quantum Field Theory
合作研究:重整化、路径积分以及共形量子力学、奇异势和量子场论的应用
- 批准号:
0308435 - 财政年份:2003
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Development of Plasma Theory in Support of the Quest to Form and Trap Cold Neutral Antimatter
等离子体理论的发展支持形成和捕获冷中性反物质
- 批准号:
0244444 - 财政年份:2003
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Plasma Overlap Physics in Nested Penning Traps and the Quest to Confine Neutral Antimatter
嵌套潘宁陷阱中的等离子体重叠物理和限制中性反物质的探索
- 批准号:
0099617 - 财政年份:2001
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Plasma Overlap Physics in Nested-Well Traps and the Quest for Cold Antihydrogen
嵌套井陷阱中的等离子体重叠物理和冷反氢的探索
- 批准号:
9876921 - 财政年份:1999
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134747 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
- 批准号:
2244696 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Collaborative Research: High-velocity and long-displacement stick-slips: Experimental analogs of earthquake rupture and the seismic cycle
合作研究:高速和长位移粘滑运动:地震破裂和地震周期的实验模拟
- 批准号:
2240418 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246686 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: Enhancing Chemoselectivity and Efficiency Through Control of Axial Coordination in Rh(II) Complexes: An Experimental and Computational Approach
合作研究:通过控制 Rh(II) 配合物的轴向配位提高化学选择性和效率:实验和计算方法
- 批准号:
2247836 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I:SweetPea: Automating the Implementation and Documentation of Unbiased Experimental Designs
合作研究:HNDS-I:SweetPea:自动化无偏实验设计的实施和记录
- 批准号:
2318548 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I:SweetPea: Automating the Implementation and Documentation of Unbiased Experimental Designs
合作研究:HNDS-I:SweetPea:自动化无偏实验设计的实施和记录
- 批准号:
2318550 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant














{{item.name}}会员




