Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping
合作研究:反氢生成和捕获的等离子体物理的实验和理论研究
基本信息
- 批准号:1202519
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Last year, antihydrogen was trapped for the first time by the ALPHA collaboration at CERN. By this point hundreds of antiatoms have been trapped for times as long as 1000 s. While this was a remarkable achievement, the ALPHA apparatus is not well configured for most measurements of the properties of antihydrogen, and must be rebuilt to allow laser and better microwave access. Furthermore, the trapping rates, while sufficient to begin studies of the properties of antimatter, are lower than optimal. There are two broad challenges to improving the trapping rate: (1) Understanding the behavior of the positron and antiproton plasmas from which the antihydrogen is synthesized; and (2) Understanding the atomic processes by which positrons and antiprotons recombine. Antihydrogen synthesis lies on the boundary between atomic and plasma physics, and cannot be studied properly without employing tools from both fields. The long term goal of antihydrogen research is to search for differences between the properties of hydrogen and antihydrogen. Such differences might occur between the spectra of the two species. Differences in the spectra could only result from CPT violation. Another place differences might occur is in the gravitational interactions of hydrogen and antihydrogen. Such differences could solve the baryogenesis problem. A third area of potential difference is in the fractional charge of antihydrogen. The net charge of antihydrogen is only known to about 10^-7 relative to the unit charge. Positive results from any of these measurements would completely change our understanding of fundamental particles and fields. The physics issues will be studied with experiments at CERN, with classical trajectory Monte Carlo, molecular dynamics, and 3D PIC codes, and with analytic theory. Some of the questions that will be addressed include: achieving improved (lower) lepton and antiproton temperatures; studying how leptons interact with the background radiation field; studying how leptons interact with resonant cavities; improved plasma diagnostics; and improved mixing of positrons and antiprotons, so that more of the resultant antihydrogen can be held in a very shallow neutral trap. While the motivation for seeking answers to these questions comes from antihydrogen research, many of these questions raise novel and deep issues in plasma and atomic physics. The long-¬term goals of this research address the very basis of our understanding of the world around us. Potentially, it has deep implications on the nature of particle interactions, on the question of matter-¬antimatter symmetry, and on cosmology. At the same time, this research is uniquely visible because the study of antimatter is accessible and fascinating to the public. The trapping of antihydrogen last year was extraordinarily widely noted in the lay and scientific press. Antihydrogen experiments are sufficiently simple that they can be comprehended in their entirety by graduate students. Consequently, they offer students a broad education. Experimentalists learn beam and plasma physics, experimental planning and design, instrumentation, UHV practice, electronics, cryogenics, magnetics and software development. Along with theory development, theorists can make critical contributions to the design, operation, and analysis of the experiments. The relative accessibility of the material makes it easy to integrate undergraduate students into both the experimental and theoretical program. The proposed research includes significant participation by members of underrepresented groups.
去年,反氢粒子第一次被欧洲核子研究中心的ALPHA合作项目捕获。到目前为止,数百个反原子被捕获的时间是1000秒的几倍。虽然这是一项了不起的成就,但ALPHA装置的配置并不适合大多数反氢性质的测量,必须重建以允许激光和更好的微波访问。此外,捕获率虽然足以开始研究反物质的性质,但仍低于最佳水平。提高捕获率面临两大挑战:(1)理解合成反氢的正电子和反质子等离子体的行为;(2)了解正电子和反质子重组的原子过程。反氢合成处于原子物理和等离子体物理的边界上,如果不使用这两个领域的工具,就不能进行适当的研究。反氢研究的长期目标是寻找氢和反氢性质之间的差异。这种差异可能发生在两个物种的光谱之间。光谱上的差异只能由CPT违和引起。另一个可能出现差异的地方是氢和反氢的引力相互作用。这种差异可以解决重子发生的问题。电位差的第三个方面是反氢的分数电荷。相对于单位电荷,反氢的净电荷仅为10^-7。任何这些测量的积极结果都将彻底改变我们对基本粒子和基本场的理解。物理问题将通过在CERN的实验、经典轨迹蒙特卡罗、分子动力学、3D PIC代码和解析理论进行研究。将要解决的一些问题包括:实现改进的(更低的)轻子和反质子温度;研究轻子与背景辐射场的相互作用;研究轻子与谐振腔的相互作用;改进血浆诊断;并且改进了正电子和反质子的混合,这样更多的反氢可以被保存在一个非常浅的中性阱中。虽然寻找这些问题答案的动机来自反氢研究,但其中许多问题在等离子体和原子物理学中提出了新颖而深刻的问题。这项研究的长期目标是解决我们理解周围世界的基础问题。它潜在地对粒子相互作用的本质、物质-反物质对称问题和宇宙学有着深远的影响。与此同时,这项研究是独一无二的,因为反物质的研究对公众来说是容易接近和吸引人的。去年反氢的捕获在非专业和科学媒体上得到了非常广泛的关注。反氢实验非常简单,研究生可以完全理解它们。因此,他们为学生提供了广泛的教育。实验人员学习束流和等离子体物理、实验规划和设计、仪器、特高压实践、电子学、低温学、磁学和软件开发。随着理论的发展,理论学家可以对实验的设计、操作和分析做出重要贡献。材料的相对可及性使得本科生很容易融入实验和理论课程。拟议的研究包括代表性不足的群体成员的大量参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Fajans其他文献
Ecole de Physique des Houches
乌什体育学院
- DOI:
10.1016/s0924-8099(13)60004-9 - 发表时间:
2012 - 期刊:
- 影响因子:5.4
- 作者:
Joel Fajans;Diocotron Diocotron;D. Durkin;R. d.;D. H. E. Dubin - 通讯作者:
D. H. E. Dubin
Shot-noise-induced lower temperature limit of the nonneutral plasma parallel temperature diagnostic
- DOI:
10.1140/epjti/s40485-024-00112-0 - 发表时间:
2024-12-18 - 期刊:
- 影响因子:1.900
- 作者:
Adrianne Zhong;Joel Fajans;Jonathan S. Wurtele - 通讯作者:
Jonathan S. Wurtele
Joel Fajans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Fajans', 18)}}的其他基金
Collaborative Research: Precision Tests of Physics Beyond the Standard Model with Antihydrogen
合作研究:超越标准模型的反氢物理精度测试
- 批准号:
1806305 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping
合作研究:反氢生成和捕获的等离子体物理的实验和理论研究
- 批准号:
1500538 - 财政年份:2015
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping
合作研究:反氢生成和捕获的等离子体物理的实验和理论研究
- 批准号:
0903916 - 财政年份:2009
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Introducing Computerized Data Acquisition Signal Processing and Control to an Advanced Physics Laboratory
将计算机数据采集信号处理和控制引入先进物理实验室
- 批准号:
0411367 - 财政年份:2004
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Simple, High Order Multipole Traps for Simultaneous Non-Neutral and Neutral Particle Confinement
用于同时限制非中性和中性粒子的简单、高阶多极陷阱
- 批准号:
0317451 - 财政年份:2003
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
2D Fluid Dynamics with Pure Electron Plasmas
纯电子等离子体的二维流体动力学
- 批准号:
0078705 - 财政年份:2000
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Presidential Young Investigator Award: Properties of Non- Neutral One-Species Plasmas (Physics)
总统青年研究员奖:非中性单一物种等离子体的性质(物理)
- 批准号:
8857463 - 财政年份:1988
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134747 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
- 批准号:
2244696 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Collaborative Research: High-velocity and long-displacement stick-slips: Experimental analogs of earthquake rupture and the seismic cycle
合作研究:高速和长位移粘滑运动:地震破裂和地震周期的实验模拟
- 批准号:
2240418 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246686 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: Enhancing Chemoselectivity and Efficiency Through Control of Axial Coordination in Rh(II) Complexes: An Experimental and Computational Approach
合作研究:通过控制 Rh(II) 配合物的轴向配位提高化学选择性和效率:实验和计算方法
- 批准号:
2247836 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: Experimental General Relativity using Radio Interferometry of a Black Hole Photon Ring
合作研究:利用黑洞光子环射电干涉测量的实验广义相对论
- 批准号:
2307887 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246687 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant