Stability and Structure of Gibbs' Measures in Mean-field Spin Glass Models

平均场自旋玻璃模型中吉布斯测度的稳定性和结构

基本信息

  • 批准号:
    1205781
  • 负责人:
  • 金额:
    $ 15.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

We propose to study some known stability properties of the Gibbs measures in several mean-field spin glass models and to develop new stability properties for other models, as well as to explore what kind of information about the Gibbs measures can be deduced from their stability properties. One of the most important objectives in any given model is to understand the asymptotic structure of its Gibbs measure and in a number of models this structure is expected to be described by a version of the Parisi ultrametric Ansatz. For diluted models, such as diluted p-sat and p-spin models, the proposal concerns with a better mathematical understanding of a framework for the diluted Parisi ansatz described by a random measure on the space of measurable functions and, in particular, with finding new ways to utilize some recent stability results in these models. For perceptron type models, the proposal aims to develop new stability properties with applications to certain cavity computations. Many models in the general area of Spin Glasses originate from the attempts to understand the behavior of various optimization problems from different branches of science (physics, computer science, biology) and, more specifically, their average or typical behavior rather than focusing on one fixed scenario. This is done by randomizing the parameters of the problem and then trying to answer several key questions using the methods from Statistical Physics and Probability Theory. In the seventies and eighties, the physicists developed a number of novel ideas to approach these very difficult questions, first, in the setting of the now famous Sherrington-Kirkpatrick model, and then later successfully applied these ideas to other models as well. The ideas of the physicists were for the most part heuristic and are often described by the German word "Ansatz" which means "an educated guess that is verified later by its results". In recent years, many of these ideas have been confirmed rigorously, especially, in the setting of the Sherrington-Kirkpatrick model. The goal of this project is to build upon recent progress and try to confirm other, even more bold, predictions of the physicists that are crucial for broader applicability of their ideas.
我们建议在几个平均场自旋玻璃模型中研究吉布斯测度的一些已知的稳定性性质,并为其他模型开发新的稳定性性质,以及探索什么样的吉布斯测度的信息可以从它们的稳定性性质推导出来。在任何给定的模型中,最重要的目标之一是了解其吉布斯测度的渐近结构,在许多模型中,这种结构预计将由一个版本的Parisi超度量Anglands描述。 对于稀释模型,如稀释p-sat和p-spin模型,该提案涉及更好地数学理解由可测量函数空间上的随机测量描述的稀释Parisi模型的框架,特别是寻找新的方法来利用这些模型中的一些最近的稳定性结果。对于感知器类型的模型,该建议的目的是开发新的稳定性与应用程序的某些腔计算。自旋玻璃一般领域的许多模型都源于试图理解不同科学分支(物理学,计算机科学,生物学)的各种优化问题的行为,更具体地说,它们的平均或典型行为,而不是专注于一个固定的场景。这是通过随机化问题的参数,然后尝试使用统计物理和概率论的方法回答几个关键问题来完成的。在70年代和80年代,物理学家们提出了一些新的想法来解决这些非常困难的问题,首先是在现在著名的谢林顿-柯克帕特里克模型的背景下,然后又成功地将这些想法应用到其他模型中。物理学家的想法大多是启发式的,通常用德语单词“Angloman”来描述,意思是“一个有根据的猜测,后来被其结果所证实”。近年来,这些想法中的许多都得到了严格的证实,特别是在谢灵顿-柯克帕特里克模型的背景下。这个项目的目标是建立在最近的进展,并试图证实其他更大胆的,物理学家的预测是至关重要的,他们的想法更广泛的适用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dmitriy Panchenko其他文献

Dmitriy Panchenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dmitriy Panchenko', 18)}}的其他基金

Mean-Field Spin Glass Models
平均场自旋玻璃模型
  • 批准号:
    0904565
  • 财政年份:
    2009
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Standard Grant
Spin Glass Models
旋转玻璃模型
  • 批准号:
    0832717
  • 财政年份:
    2008
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Standard Grant
Spin Glass Models
旋转玻璃模型
  • 批准号:
    0504108
  • 财政年份:
    2005
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Standard Grant

相似海外基金

REU Site: Microbial Biofilm Development, Resistance, & Community Structure
REU 网站:微生物生物膜的发展、耐药性、
  • 批准号:
    2349311
  • 财政年份:
    2025
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Continuing Grant
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 15.02万
  • 项目类别:
    EU-Funded
Structure-guided optimisation of light-driven microalgae cell factories
光驱动微藻细胞工厂的结构引导优化
  • 批准号:
    DP240101727
  • 财政年份:
    2024
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Discovery Projects
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
  • 批准号:
    EP/Y027906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Research Grant
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
  • 批准号:
    EP/Z531327/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Research Grant
Structure vs Invariants in Proofs (StrIP)
证明中的结构与不变量 (StrIP)
  • 批准号:
    MR/Y011716/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Fellowship
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
  • 批准号:
    BB/Y004531/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Research Grant
Understanding the electronic structure landscape in wide band gap metal halide perovskites
了解宽带隙金属卤化物钙钛矿的电子结构景观
  • 批准号:
    EP/X039285/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Standard Grant
CAREER: Understanding Processing-Structure-Property Relationships in Co-Axial Wire-Feed, Powder-Feed Laser Directed Energy Deposition
职业:了解同轴送丝、送粉激光定向能量沉积中的加工-结构-性能关系
  • 批准号:
    2338951
  • 财政年份:
    2024
  • 资助金额:
    $ 15.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了