Optimizing Cycling Stability and Coulombic Efficiency of Nanostructured Si-Based Anode
优化纳米结构硅基阳极的循环稳定性和库伦效率
基本信息
- 批准号:1206462
- 负责人:
- 金额:$ 40.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-15 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL DESCRIPTION: Traditional Li-ion batteries employ carbonaceous anodes, but projected performance targets for next-generation Li-ion batteries require new, higher capacity materials that can be electrochemically cycled in a stable manner. The most attractive candidate to replace carbon is silicon; it has the highest known capacity, is relatively low-cost, and is physically abundant. At present, the drawback with silicon is that a volume expansion on the order of ca. 300% occurs upon Li insertion that leads to rapid capacity fade during cycling. Creative approaches to realize highly-reliable electrodes are being pursued with nanometer-scale materials and geometric architectures; impressive results have been obtained, but a fundamental understanding is still lacking. To this end, this project focuses on understanding the complex phenomena of Li insertion and extraction from Si, and developing novel nanostructured Si-based anodes which can address these critical technical issues with Si anodes.TECHNICAL DETAILS: This project aims to uncover the underlying principles that govern the complex phenomena of Li insertion and extraction from Si, especially the complex interplay among electrochemical surface reactions, transport, mechanical response, and material evolution based on a tightly-coupled experimental-theoretical research. A combination of theoretical electrochemomechanics, hybrid organic-inorganic sol-gel synthesis, in situ monitoring of microstructural developments with a focused ion beam system, and AC impedance measurements allows a systematic exploration of materials chemistries for the creation of nanostructured Si-based anodes. By targeting enhanced cycling stability, mechanical stability, and coulombic efficiency, these core-shell nanostructures are designed to exhibit unsurpassed performance as Li-ion battery anodes. By coupling research discoveries with ongoing and new educational activities, students at all levels (K-12 through graduate) will be exposed to the excitement of renewable energy including energy storage material systems for electric vehicles. Interdisciplinary, tightly integrated research provides a unique environment for the education of a new cadre of scientists and engineers who will become experts in their disciplinary fields and also understand the broader context of sustainable energy; thus, they will be equipped to lead the design of a new sustainable energy future.
非技术描述:传统的锂离子电池使用碳质阳极,但下一代锂离子电池的预期性能目标需要能够以稳定的方式进行电化学循环的新的、更高容量的材料。最有吸引力的替代碳的候选者是硅;它具有已知的最高容量,相对低的成本,并且物理上丰富。目前,硅的缺点是在锂插入时发生约300%的体积膨胀,导致在循环过程中容量迅速衰减。人们正在用纳米材料和几何结构来寻求实现高度可靠电极的创造性方法;已经取得了令人印象深刻的结果,但仍然缺乏基本的理解。为此,本项目致力于了解硅中锂的插入和提取的复杂现象,并开发新型的纳米结构硅基阳极来解决这些关键的技术问题。技术细节:本项目旨在揭示控制硅中锂的插入和提取复杂现象的基本原理,特别是在紧密耦合的实验-理论研究的基础上,揭示电化学表面反应、输运、机械响应和材料演化之间的复杂相互作用。理论电化学力学、有机-无机混合溶胶-凝胶合成、聚焦离子束系统对微结构发展的现场监测以及交流阻抗测量相结合,使人们能够系统地探索材料化学,以创建纳米结构的硅基阳极。通过提高循环稳定性、机械稳定性和库仑效率,这些核壳纳米结构被设计为表现出作为锂离子电池阳极的无与伦比的性能。通过将研究发现与正在进行的和新的教育活动相结合,各级(从K-12到研究生)的学生将接触到可再生能源的兴奋,包括电动汽车的储能材料系统。跨学科、紧密结合的研究为培养新的科学家和工程师队伍提供了独特的环境,他们将成为各自学科领域的专家,并了解可持续能源的更广泛背景;因此,他们将有能力领导设计一个新的可持续能源未来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Se-Hee Lee其他文献
Magnetization Loss of MgB2 Superconducting Wire at Various Temperatures
- DOI:
10.1007/s10948-012-1866-9 - 发表时间:
2012-12-28 - 期刊:
- 影响因子:1.700
- 作者:
Seyong Choi;M. S. A. Hossain;Jung Ho Kim;Shi Xue Dou;Jang-Hee Yoon;Byoung-Seob Lee;Mi-Sook Won;Tsukasa Kiyoshi;Joonsun Kang;Hyoungku Kang;Se-Hee Lee - 通讯作者:
Se-Hee Lee
Color change of V<sub>2</sub>O<sub>5</sub> thin films upon exposure to organic vapors
- DOI:
10.1016/j.solmat.2006.11.021 - 发表时间:
2008-02-01 - 期刊:
- 影响因子:
- 作者:
Chungwon Seo;Hyeonsik Cheong;Se-Hee Lee - 通讯作者:
Se-Hee Lee
Evaluation of mechanical deformation and distributive magnetic loads with different mechanical constraints in two parallel conducting bars
- DOI:
10.3938/jkps.71.203 - 发表时间:
2017-08-20 - 期刊:
- 影响因子:0.900
- 作者:
Ho-Young Lee;Se-Hee Lee - 通讯作者:
Se-Hee Lee
Characterization of brewing microorganisms isolated from Korean traditional nuruk for Cheongju production
- DOI:
10.1007/s10068-017-0114-2 - 发表时间:
2017-08-03 - 期刊:
- 影响因子:3.100
- 作者:
Si-Hyup Kim;Se-Hee Lee;Soo-Hwan Yeo;Sang-Hyeon Lee;Chul Cheong - 通讯作者:
Chul Cheong
Electrophoretic kinetics of concentrated TiO2 nanoparticle suspensions in aprotic solvent
- DOI:
10.1007/s13391-017-7081-x - 发表时间:
2017-10-02 - 期刊:
- 影响因子:2.600
- 作者:
So-Yeon Lee;Jung-Ryoul Yim;Se-Hee Lee;In-Suk Choi;Ki Tae Nam;Young-Chang Joo - 通讯作者:
Young-Chang Joo
Se-Hee Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Se-Hee Lee', 18)}}的其他基金
I-Corps: Biomanufacturing of Advanced Porous Carbon Materials
I-Corps:先进多孔碳材料的生物制造
- 批准号:
1661734 - 财政年份:2016
- 资助金额:
$ 40.85万 - 项目类别:
Standard Grant
Sustainable Energy Pathways: A Lab-to-Market Paradigm for the Optimal Design of Sustainable Energy Storage Materials
可持续能源途径:可持续储能材料优化设计的实验室到市场范式
- 批准号:
1231048 - 财政年份:2012
- 资助金额:
$ 40.85万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 40.85万 - 项目类别:
Standard Grant
MICRO-CYCLE: Unravelling the role of microbial genomic traits in organic matter cycling and molecular composition along the river continuum
微循环:揭示微生物基因组特征在河流连续体有机物循环和分子组成中的作用
- 批准号:
NE/Z000106/1 - 财政年份:2024
- 资助金额:
$ 40.85万 - 项目类别:
Research Grant
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 40.85万 - 项目类别:
Studentship
OPP-PRF: Linking the Physical and Chemical Drivers of Carbon Cycling in Arctic Source-to-sink Systems
OPP-PRF:将北极源-汇系统中碳循环的物理和化学驱动因素联系起来
- 批准号:
2419995 - 财政年份:2024
- 资助金额:
$ 40.85万 - 项目类别:
Standard Grant
The National Cycling Data and Analysis Platform (NCDAP)
国家自行车数据和分析平台(NCDAP)
- 批准号:
LE240100118 - 财政年份:2024
- 资助金额:
$ 40.85万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Silicon CycLing IN Glaciated environments
冰川环境中的硅自行车
- 批准号:
NE/X014819/1 - 财政年份:2024
- 资助金额:
$ 40.85万 - 项目类别:
Research Grant
RESEARCH-PGR: Cycling to low-temperature tolerance
研究-PGR:循环到耐低温
- 批准号:
2332611 - 财政年份:2024
- 资助金额:
$ 40.85万 - 项目类别:
Continuing Grant
MICRO-CYCLE: Unravelling the role of microbial genomic traits in organic matter cycling and molecular composition along the river continuum
微循环:揭示微生物基因组特征在河流连续体有机物循环和分子组成中的作用
- 批准号:
NE/Z000173/1 - 财政年份:2024
- 资助金额:
$ 40.85万 - 项目类别:
Research Grant
CAREER: Deconvolving organic substrates as the critical link between changes in organic matter and global biogeochemical sulfur, carbon, and oxygen cycling
职业:解卷积有机底物作为有机物变化与全球生物地球化学硫、碳和氧循环之间的关键联系
- 批准号:
2338040 - 财政年份:2024
- 资助金额:
$ 40.85万 - 项目类别:
Continuing Grant
DISES Investigating mercury biogeochemical cycling via mixed-methods in complex artisanal gold mining landscapes and implications for community health
DISES 通过混合方法研究复杂手工金矿景观中的汞生物地球化学循环及其对社区健康的影响
- 批准号:
2307870 - 财政年份:2024
- 资助金额:
$ 40.85万 - 项目类别:
Standard Grant