Extreme Values For Random Processes of Tree Structure

树结构随机过程的极值

基本信息

  • 批准号:
    1207988
  • 负责人:
  • 金额:
    $ 13.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2012-12-31
  • 项目状态:
    已结题

项目摘要

The proposed project aims to study extreme values of random processes, which arise naturally from many areas such as combinatorial optimization, pure probability theory, and statistical physics. Recent study on this topic by the PI and his collaborators has led to solutions for a number of long-standing open problems including an approximation of cover times up to multiplicative constant posed by Aldous-Fill, the Winkler-Zukerman blanket time conjecture, the asymptotic relation between cover times and discrete Gaussian free fields for bounded degree graphs, the order of the variance for the maximum of the two-dimensional discrete Gaussian free field, and the critical behavior for Aldous' percolation of averages in the mean-field setting. A general underlying principle in the aforementioned works is to employ tree structures associated with the random processes, highlighted by an application of Fernique-Talagrand majorizing measure theory in the study of cover times of random walks. The main focus of the project is to understand extreme values of various processes via further exploring associated tree structures. Despite efforts by the PI and a list of other researchers, a number of outstanding questions remain open in this area, such as the asymptotics and concentration phenomenon for cover times in general graphs, the limiting law for the centered maximum and the scaling limit of the extremal process for 2D discrete Gaussian free field, as well as percolation of averages in high dimensions and first passage percolation on social networks.The research on extreme values has a number of facets including the typical magnitude, the concentration phenomenon, and the limit in law. While the proposed area is rich both in theory and examples, the proposal features the models/processes that possess tree structures, implicitly always and well hidden in most examples. Special attention will be devoted to cover times of random walks, discrete Gaussian free field, percolation of averages, as well as first passage percolation on social networks. From a theoretical perspective, our study reveals conceptual connections among topics that have been studied separately, and further understand interesting aspects of important random processes such as random walks (arguably the most studied stochastic processes by mathematicians) and Gaussian free fields (an object that is of fundamental interest in statistical physics). From a practical perspective, the research is motivated by applications in areas including computer science, operation research and social network. For instances, the cover time of a random walk has applications in computer science such as testing graph connectivity and protocol testing; studying first passage percolation on social networks is of significance to understand the spread of information/epidemics, and in turn is likely to provide insight on optimal strategies to manage the flow of information or to preclude infections of diseases.
该项目旨在研究随机过程的极值,这些极值自然地出现在许多领域,如组合优化,纯概率论和统计物理。 PI和他的合作者最近对这个主题的研究已经导致了一些长期存在的开放问题的解决方案,包括Aldous-Fill提出的覆盖时间近似到乘法常数,Winkler-Zukerman blanket time猜想,有界度图的覆盖时间和离散高斯自由场之间的渐近关系,二维离散高斯自由场最大值的方差的阶数,以及平均场设置中Aldous的平均渗流的临界行为。在上述作品的一般基本原则是采用树结构与随机过程,突出的应用程序的Fernique-Talagrand优化措施理论的研究覆盖时间的随机游动。该项目的主要重点是通过进一步探索相关的树结构来理解各种过程的极值。 尽管PI和一系列其他研究人员做出了努力,但在这一领域仍然存在许多悬而未决的问题,例如一般图中覆盖时间的渐近性和集中现象,2D离散高斯自由场极值过程的中心最大值和标度极限的限制律,以及高维平均值的渗流和社交网络上的第一通道渗流。极值的研究有许多方面,包括典型的量值,集中现象,法律上的限制。 虽然所提出的领域在理论和示例方面都很丰富,但该提案的特点是具有树结构的模型/过程,在大多数示例中总是隐含地隐藏得很好。特别注意将致力于覆盖时间的随机游动,离散高斯自由场,平均渗流,以及首通渗流社交网络。 从理论的角度来看,我们的研究揭示了已分别研究的主题之间的概念联系,并进一步了解重要随机过程的有趣方面,如随机游走(可以说是数学家研究最多的随机过程)和高斯自由场(统计物理学中的基本兴趣对象)。从实践的角度来看,该研究的动机是在计算机科学,运筹学和社会网络等领域的应用。例如,随机游走的覆盖时间在计算机科学中有应用,例如测试图连通性和协议测试;研究社交网络上的第一通道渗流对于理解信息/流行病的传播具有重要意义,并且反过来可能提供关于管理信息流或预防疾病感染的最佳策略的见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian Ding其他文献

Thermally treated soya bean oleosomes: the changes in their stability and associated proteins
热处理大豆油质体:其稳定性和相关蛋白质的变化
WITHDRAWN: Design, synthesis and biological evaluation of 3-substituted-4-anilinequinoline as EGFR tyrosine kinase inhibitors.
撤回:3-取代-4-苯胺喹啉作为 EGFR 酪氨酸激酶抑制剂的设计、合成和生物学评价。
  • DOI:
    10.1016/j.bmcl.2012.10.030
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Yongjun Mao;Kai Xie;W. Zhu;Jianfeng Li;Hua Xie;Jian Ding;N. Terrett;Jingkang Shen;Jingshan Shen
  • 通讯作者:
    Jingshan Shen
长叶蜈蚣藻多糖下调组织因子在HMEC-1细胞中表达抑制血管新生
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Xiong-Wen Zhang;Li-Ping Lin;Chao Zhang;Fan Yang;Jian Ding;Shun-Chun Wang;Mei-Hong Li
  • 通讯作者:
    Mei-Hong Li
Immunogenic comparison of two coupling methods of marine polysaccharide to bovine serum albumin.
海洋多糖与牛血清白蛋白两种偶联方法的免疫原性比较。
Anatomy of the giant component: The strictly supercritical regime
巨型部件的解剖:严格的超临界状态
  • DOI:
    10.1016/j.ejc.2013.06.004
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jian Ding;E. Lubetzky;Y. Peres
  • 通讯作者:
    Y. Peres

Jian Ding的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian Ding', 18)}}的其他基金

Geometric, Optimizational and Spectral Problems in Large Random Structures
大型随机结构中的几何、优化和谱问题
  • 批准号:
    1953848
  • 财政年份:
    2020
  • 资助金额:
    $ 13.19万
  • 项目类别:
    Continuing Grant
CAREER: Stochastic processes in statistical physics and optimization
职业:统计物理和优化中的随机过程
  • 批准号:
    1757479
  • 财政年份:
    2017
  • 资助金额:
    $ 13.19万
  • 项目类别:
    Continuing Grant
CAREER: Stochastic processes in statistical physics and optimization
职业:统计物理和优化中的随机过程
  • 批准号:
    1455049
  • 财政年份:
    2015
  • 资助金额:
    $ 13.19万
  • 项目类别:
    Continuing Grant
Extreme Values For Random Processes of Tree Structure
树结构随机过程的极值
  • 批准号:
    1313596
  • 财政年份:
    2012
  • 资助金额:
    $ 13.19万
  • 项目类别:
    Standard Grant

相似海外基金

Building Desirable and Resilient Public Media Futures: Establishing the Centre for Public Values, Technology & Society
建设理想且有弹性的公共媒体未来:建立公共价值观和技术中心
  • 批准号:
    MR/X033651/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.19万
  • 项目类别:
    Fellowship
CRII: SHF: Theoretical Foundations of Verifying Function Values and Reducing Annotation Overhead in Automatic Deductive Verification
CRII:SHF:自动演绎验证中验证函数值和减少注释开销的理论基础
  • 批准号:
    2348334
  • 财政年份:
    2024
  • 资助金额:
    $ 13.19万
  • 项目类别:
    Standard Grant
Restoring & future-proofing the biocultural values of endangered seagrasses
正在恢复
  • 批准号:
    LP220200950
  • 财政年份:
    2024
  • 资助金额:
    $ 13.19万
  • 项目类别:
    Linkage Projects
Investigating the archaeological values of Marra cultural heritage sites
调查马拉文化遗产地的考古价值
  • 批准号:
    LP220100143
  • 财政年份:
    2024
  • 资助金额:
    $ 13.19万
  • 项目类别:
    Linkage Projects
若者支援/Youth Work/Informal教育のCore Values共有化の方法をめぐる国際共同研究
国际联合研究共享青年支持/青年工作/非正式教育核心价值观的方法
  • 批准号:
    24K00379
  • 财政年份:
    2024
  • 资助金额:
    $ 13.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
U.S. participation in the 8th wave of the World Values Survey
美国参与第八波世界价值观调查
  • 批准号:
    2331175
  • 财政年份:
    2024
  • 资助金额:
    $ 13.19万
  • 项目类别:
    Standard Grant
DEVAL - Democratic Values and Authoritarian Legitimacy
DEVAL - 民主价值观和威权合法性
  • 批准号:
    EP/Y036832/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.19万
  • 项目类别:
    Research Grant
Multiple Zeta Values in Function Fields using Motivic Framework
使用 Motivic 框架的函数域中的多个 Zeta 值
  • 批准号:
    2302399
  • 财政年份:
    2023
  • 资助金额:
    $ 13.19万
  • 项目类别:
    Standard Grant
Development of the assessment method to quantify the physical coordination ability of children: through the evaluation using muscle coherence values.
量化儿童身体协调能力的评估方法的开发:通过肌肉一致性值的评估。
  • 批准号:
    23K10740
  • 财政年份:
    2023
  • 资助金额:
    $ 13.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: IIS Core: Small: World Values of Conversational AI and the Consequences for Human-AI Interaction
协作研究:IIS 核心:小:对话式 AI 的世界价值以及人机交互的后果
  • 批准号:
    2230466
  • 财政年份:
    2023
  • 资助金额:
    $ 13.19万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了