Multivariate Methods for High-Dimensional Transposable Data

高维转置数据的多元方法

基本信息

  • 批准号:
    1209017
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

High-dimensional data is prevalent in areas such as medicine, finance, environmental studies, imaging, networking, and the Internet. Making sense of this massive amount of data holds the key to critical scientific questions such as discovering biomarkers related to disease and evaluating the effects of climate change. The proposed research will use statistical learning techniques to develop novel multivariate approaches incorporating sparsity (variable selection), smoothness, and accounting for known structure in high-dimensional data. Extending multivariate methods for structured data improves signal recovery and feature selection. These techniques will be useful in spatio-temporal and image data, for example, where strong correlations from known structure obscure dimension reduction. Much attention has been given to multivariate methods for matrix data. The proposed research will extend many modern multivariate techniques such as sparse principal components analysis to the multi-dimensional or tensor framework. Finally, this proposal seeks to generalize much of the existing literature on regularized multivariate methods such as principal components analysis, canonical correlations analysis and linear discriminant analysis by illustrating how to encourage many types of regularization. This proposal also seeks to develop algorithmic and computational frameworks that will allow researchers to apply these methods to modern massive data sets.As multivariate analysis techniques enjoy nearly universal application, the theory and methods developed in this proposal will have wide ranging significance in many applied fields. The methods developed are in part motivated by and will have immediate impact in neuroimaging studies, cancer genomics, and metabolomics studies. Other areas where this methodology will prove beneficial include climate studies, remote sensing, networking, engineering, finance, and imaging. Results of this research will be disseminated through the release of open-source, publicly available software and will be incorporated in course material of an advanced graduate course on statistical learning.
高维数据在医学、金融、环境研究、成像、网络和互联网等领域很普遍。理解这些海量数据是关键科学问题的关键,例如发现与疾病相关的生物标志物和评估气候变化的影响。拟议的研究将使用统计学习技术来开发新的多变量方法,包括稀疏性(变量选择),平滑性和高维数据中已知结构的解释。扩展结构化数据的多变量方法,提高了信号恢复和特征选择。这些技术在时空和图像数据中将是有用的,例如,其中来自已知结构的强相关性使降维变得模糊。矩阵数据的多变量方法受到了广泛的关注。该研究将扩展许多现代多元技术,如稀疏主成分分析,多维或张量框架。最后,该建议旨在推广现有文献中的正则化多变量方法,如主成分分析,典型相关分析和线性判别分析,说明如何鼓励多种类型的正则化。该计划还寻求开发算法和计算框架,使研究人员能够将这些方法应用于现代海量数据集,随着多元分析技术的广泛应用,该计划中开发的理论和方法将在许多应用领域具有广泛的意义。开发的方法部分是由神经影像学研究,癌症基因组学和代谢组学研究的动机,并将产生直接的影响。 这种方法将证明有益的其他领域包括气候研究,遥感,网络,工程,金融和成像。这项研究的结果将通过发布公开源码的软件加以传播,并将纳入关于统计学习的高级研究生课程的教材。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Genevera Allen其他文献

Breathe Easy, an automated respiratory data pipeline for waveform characteristic analysis
Breathe Easy,用于波形特征分析的自动化呼吸数据管道
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Savannah J. Lusk;Christopher Ward;Andersen Chang;Avery Twitchell‐Heyne;Shaun Fattig;Genevera Allen;Joanna Jankowsky;Russell Ray
  • 通讯作者:
    Russell Ray
Extreme Graphical Models with Applications to Functional Neuronal Connectivity
极端图形模型及其在功能神经元连接中的应用
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andersen Chang;Genevera Allen
  • 通讯作者:
    Genevera Allen

Genevera Allen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Genevera Allen', 18)}}的其他基金

Minipatch Learning for Selection, Stability, Inference, and Scalability
用于选择、稳定性、推理和可扩展性的小补丁学习
  • 批准号:
    2210837
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
CAREER: New Techniques for Statistical Learning and Multivariate Analysis
职业:统计学习和多元分析新技术
  • 批准号:
    1554821
  • 财政年份:
    2016
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Statistical Methods for Integrated Analysis of High-Throughput Biomedical Data
合作研究:高通量生物医学数据综合分析的统计方法
  • 批准号:
    1264058
  • 财政年份:
    2013
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
  • 批准号:
    2422478
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
  • 批准号:
    23H03353
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
CAREER: Practical algorithms and high dimensional statistical methods for multimodal haplotype modelling
职业:多模态单倍型建模的实用算法和高维统计方法
  • 批准号:
    2239870
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
III: Small: Computational Methods for Multi-dimensional Data Integration to Improve Phenotype Prediction
III:小:多维数据集成的计算方法以改进表型预测
  • 批准号:
    2246796
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Enhancement of low-dimensional embedding methods for complex structures in spatiotemporal data with their applications
时空数据中复杂结构的低维嵌入方法及其应用的增强
  • 批准号:
    23K11018
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324489
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了