Dimension Reduction Through Index Models
通过索引模型降维
基本信息
- 批准号:1209057
- 负责人:
- 金额:$ 12.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Historically statistics has dealt with extracting as much information as possible from a small data set. However, much of modern statistical research focusses on data sets that have enormous numbers of predictors. This phenomenon is a direct result of recent technological advances that have affected various fields of research, such as image processing, computational biology, and finance. This proposal addresses a very important question of fitting nonlinear regression models in high-dimensional situations, where the number predictors may be much larger than the number of observations. Unlike linear or generalized linear models, high-dimensional nonlinear regression is a very young research area that requires systematic and extensive development. Due to the curse of dimensionality, most of the work in this area has been conducted under the assumption that the regression function has a simple additive structure. The investigator proposes novel methodology for fitting index type regression models in high dimensions. The new methods cover models that are either complimentary or strictly more general than the additive models studied before. For each of the methods the proposal presents a computationally efficient fitting algorithm and lays out a plan for establishing theoretical results.The proposed research is expected to have a broad impact on the practice and education of statistics and related fields. Disciplines such as Computational Biology, Finance, Marketing and Machine Learning are highly interested in the type of methodology that is targeted in this proposal. The investigator plans to systematically develop software for implementing the proposed methods through free software packages and then make them readily available to researchers in the aforementioned fields. The proposed research will also have an impact on the growth and development of the new USC Statistics Ph.D. program. Several students in this young program will be involved in methodology research, algorithm development, and theoretical investigation. They will get hands on experience and guidance in the very important field of high-dimensional statistical inference.
从历史上看,统计学处理的是从一个小数据集中提取尽可能多的信息。然而,许多现代统计研究都集中在具有大量预测因子的数据集上。 这种现象是最近技术进步的直接结果,这些技术进步影响了各个研究领域,如图像处理,计算生物学和金融。 该建议解决了一个非常重要的问题,即在高维情况下拟合非线性回归模型,其中预测因子的数量可能远远大于观测值的数量。 与线性或广义线性模型不同,高维非线性回归是一个非常年轻的研究领域,需要系统和广泛的发展。 由于维数灾难,这一领域的大部分工作都是在假设回归函数具有简单的加性结构的情况下进行的。 研究者提出了一种新的方法来拟合高维指数型回归模型。 新的方法涵盖的模型,无论是互补的或严格更一般的添加剂模型研究之前。 对于每一种方法,该提案提出了一个计算效率高的拟合算法,并制定了建立理论结果的计划,预计拟议的研究将对统计和相关领域的实践和教育产生广泛的影响。 计算生物学、金融、市场营销和机器学习等学科对本提案中针对的方法论类型非常感兴趣。 研究人员计划通过免费软件包系统地开发用于实施拟议方法的软件,然后将其提供给上述领域的研究人员。 拟议的研究也将对新的USC统计博士的增长和发展产生影响。程序. 在这个年轻的程序的几个学生将参与方法研究,算法开发和理论研究。 他们将在高维统计推断这一非常重要的领域获得经验和指导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Radchenko其他文献
Too similar to combine? On negative weights in forecast combination
太相似而无法结合?关于预测组合中的负权重
- DOI:
10.1016/j.ijforecast.2021.08.002 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:7.100
- 作者:
Peter Radchenko;Andrey L. Vasnev;Wendun Wang - 通讯作者:
Wendun Wang
Peter Radchenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
- 批准号:32373187
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAS: Electrochemical Ionic Hydrogenation: Promoting Carbonyl and Imine Reduction through Electrocatalysis
CAS:电化学离子氢化:通过电催化促进羰基和亚胺还原
- 批准号:
2247645 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
D-ISN/Collaborative Research: Disrupting West Virginia's Opioid Crisis: a Multi-disciplinary Approach through Interdiction and Harm Reduction
D-ISN/合作研究:扰乱西弗吉尼亚州的阿片类药物危机:通过拦截和减少危害采取多学科方法
- 批准号:
2240361 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
- 批准号:
23K03437 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The changing face of HIV in the era of COVID-19: Maximising HIV incidence reduction through dynamic targeting of current and future distributions of acquisition risk.
COVID-19 时代艾滋病毒的面貌不断变化:通过动态定位当前和未来的感染风险分布,最大限度地降低艾滋病毒发病率。
- 批准号:
10548290 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
torque ripple reduction through design and control
通过设计和控制减少扭矩脉动
- 批准号:
2878188 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Studentship
D-ISN/Collaborative Research: Disrupting West Virginia's Opioid Crisis: a Multi-disciplinary Approach through Interdiction and Harm Reduction
D-ISN/合作研究:扰乱西弗吉尼亚州的阿片类药物危机:通过拦截和减少危害采取多学科方法
- 批准号:
2240362 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
New Insights of Organ Preservation Through IRI Reduction via Dendritic - Endothelial Cells Interactions
通过树突-内皮细胞相互作用减少 IRI 来保护器官的新见解
- 批准号:
23K08746 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
D-ISN/Collaborative Research: Disrupting West Virginia's Opioid Crisis: a Multi-disciplinary Approach through Interdiction and Harm Reduction
D-ISN/合作研究:扰乱西弗吉尼亚州的阿片类药物危机:通过拦截和减少危害采取多学科方法
- 批准号:
2240363 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
Development of highly active CO2 reduction electrocatalysts through a combination of operando XAS measurements and precise nanomaterial synthesis
通过结合操作 XAS 测量和精确纳米材料合成开发高活性 CO2 还原电催化剂
- 批准号:
23KK0103 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
CO2 reduction, H2 production, and biomass upgrading through one single electrochemical system: from bench to commercialization
通过单一电化学系统减少二氧化碳、生产氢气和生物质升级:从实验室到商业化
- 批准号:
577240-2022 - 财政年份:2022
- 资助金额:
$ 12.96万 - 项目类别:
Alliance Grants