Digging into Human Rights Violations: Anaphora Resolution and Emergent Witnesses

深入探讨侵犯人权行为:照应决议和紧急证人

基本信息

项目摘要

Digging into Human Rights Violations will develop methods and tools for discovering and visualizing the stories of hidden victims and unidentified perpetrators in collections of human rights violations reports and witness statements. This research in natural language processing is necessary because, a) collections documenting human rights violations frequently number many tens of thousands to tens of millions of documents, a scale that conceals victim, violation, and violator; b) many victim?s stories are only present as fragments in the reports and accounts of observers and survivors; and c) current tools excel at searching, not reading. This project's computational reader, developed using collections compiled for various Truth and Reconciliation and Historical Clarification Committees, will consist of an engine for reconstructing stories from fragments scattered across a collection, and an interface for navigating those compiled stories and the documents from which they come. Although developed for use by investigators and prosecutors of human rights violations, this novel tool will expand the possibilities of text mining and will be generally useful for scholars, researchers, and practitioners with a need to track entities, events, and patterns across large document collections. The key development is to further work on anaphora resolution (where anaphora is the existence of an expression referring to another -- usually a pronoun to its antecedent). In some cases identifying anaphora relatively straightforward, but in many cases it presents a significant challenge to traditional natural language processing methods. This project will involve a combination of natural language processing and qualitative language analysis.This project's broader impacts lie in its clear potential to inform scholars and government officials working on issues of human rights and in truth and reconciliation contexts. Further, the project includes significant student training, including training in interdisciplinary research methods.This grant was made as part of the Digging Into Data Challenge, an international competition designed to foster research collaboration across countries and to encourage innovative approaches to analyzing large data sets in the social sciences and humanities. The US based researchers will collaborate with scholars in Canada to achieve the goals of this project.
“挖掘侵犯人权行为”项目将开发各种方法和工具,以发现和可视化收集的侵犯人权行为报告和证人证词中隐藏的受害者和身份不明的肇事者的故事。这种自然语言处理的研究是必要的,因为,a)记录侵犯人权行为的集合通常有数万到数千万个文件,这一规模掩盖了受害者,侵犯和侵犯者; B)许多受害者?s的故事只作为片段出现在观察员和幸存者的报告和叙述中; c)目前的工具擅长搜索,而不是阅读。这个项目的计算阅读器,使用为各种真相与和解和历史澄清委员会汇编的集合开发,将包括一个从分散在集合中的片段重建故事的引擎,以及一个用于导航这些汇编故事和它们来自的文件的界面。虽然开发的调查人员和检察官使用的侵犯人权的行为,这种新颖的工具将扩大文本挖掘的可能性,并将普遍有用的学者,研究人员和从业人员需要跟踪实体,事件和模式在大型文件集合。关键的发展是进一步研究回指解析(其中回指是指另一个表达式的存在-通常是其先行词的代词)。在某些情况下,识别回指相对简单,但在许多情况下,它提出了一个重大的挑战,传统的自然语言处理方法。该项目将涉及自然语言处理和定性语言分析相结合,其更广泛的影响在于,它显然有可能为从事人权问题以及真相与和解工作的学者和政府官员提供信息。此外,该项目还包括重要的学生培训,包括跨学科研究方法的培训。这笔赠款是作为Digging Into Data Challenge的一部分提供的,Digging Into Data Challenge是一项国际竞赛,旨在促进各国之间的研究合作,并鼓励采用创新方法分析社会科学和人文科学中的大型数据集。美国的研究人员将与加拿大的学者合作,以实现该项目的目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Miller其他文献

Maximizing Therapeutic Effect with Progressive Addition Lenses for Accommodative Esotropia with a High AC/A Ratio
  • DOI:
    10.1016/j.jaapos.2006.01.110
  • 发表时间:
    2006-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Eedy Mezer;Chaim Stolovich;Aviva Meushar;Benjamin Miller;Ewy Meyer
  • 通讯作者:
    Ewy Meyer
Lipid hydroperoxides are key drivers of denervation-induced muscle atrophy
脂质氢过氧化物是去神经支配诱导的肌肉萎缩的关键驱动因素
  • DOI:
    10.1016/j.freeradbiomed.2021.12.039
  • 发表时间:
    2022-02-20
  • 期刊:
  • 影响因子:
    8.200
  • 作者:
    Jacob Brown;Fredrick Peelor;Benjamin Miller;Holly Van Remmen
  • 通讯作者:
    Holly Van Remmen
Recurrent retinal artery obstruction as a presenting symptom of ophthalmic artery aneurysm: a case report
Evaluating the Association Between Artificial Sweetener Intake and Indicators of Stress and Anxiety
评估人工甜味剂摄入量与压力和焦虑指标之间的关联
Polyladderane Constructed from Gemini Monomer via Photoreaction
通过光反应由 Gemini 单体构建聚梯烷
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhihan Wang;Benjamin Miller;Jonathan Butz;Katelyn Randazzo;Zijun D. Wang;Qianli R. Chu
  • 通讯作者:
    Qianli R. Chu

Benjamin Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Miller', 18)}}的其他基金

NSF Postdoctoral Fellowship in Biology FY 2019: Hydropower May Enhance Riverine Productivity Through Chemoautotrophic Pathways
2019 财年 NSF 生物学博士后奖学金:水电可以通过化学自养途径提高河流生产力
  • 批准号:
    1906511
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Fellowship Award
EAPSI: Day vs night greenhouse gas emissions from the draw-down zone of China's Three Gorges Reservoir
EAPSI:中国三峡水库消落区昼夜温室气体排放
  • 批准号:
    1415057
  • 财政年份:
    2014
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Fellowship Award

相似海外基金

A genome wide investigation into the roles of error-prone polymerases during human DNA replication
对易错聚合酶在人类 DNA 复制过程中的作用进行全基因组研究
  • 批准号:
    24K18094
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Structural studies into human muscle nicotinic acetylcholine receptors
人体肌肉烟碱乙酰胆碱受体的结构研究
  • 批准号:
    MR/Y012623/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Research Grant
Study into the effect of candidalysin exotoxin secretion and fungal ROS generation on C. albicans infection on human hepatocytes
念珠菌素外毒素分泌和真菌ROS生成对白色念珠菌感染人肝细胞影响的研究
  • 批准号:
    24K18435
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Human in the Avatar - an investigation into how tracking technologies could change the way we embody and interact in Social VR applications
《阿凡达》中的人类——追踪技术如何改变我们在社交 VR 应用程序中体现和互动的方式的调查
  • 批准号:
    2892658
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Studentship
PBPK Modeling & Simulation to Predict Transporter-Mediated Drug Secretion into Human Breast Milk
PBPK 建模
  • 批准号:
    10706040
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
Generation of the transplantation model of human iPS cell-derived airway epithelial sheet into nasal cavity
人iPS细胞来源的气道上皮片鼻腔移植模型的建立
  • 批准号:
    23K08961
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Determining pathogenic PrPC-induced signaling pathways in human iPSC-induced neurons
确定人 iPSC 诱导神经元中致病性 PrPC 诱导的信号通路
  • 批准号:
    10791127
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
Establishing a gastruloid-based 3D model of human heart development to provide novel insights into congenital heart defects.
建立基于原肠胚的人类心脏发育 3D 模型,为先天性心脏缺陷提供新的见解。
  • 批准号:
    480721
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
Carbon Nanotube-Mediated Gene Transfer into Human T-cells for CAR-T HIV Therapy
碳纳米管介导的基因转移到人类 T 细胞中用于 CAR-T HIV 治疗
  • 批准号:
    10601451
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
Explorations into the Neurocognitive Basis of Symbolic Processing: Focusing on the Mediation System between Form and Meaning of Human Language
符号加工的神经认知基础探索:聚焦人类语言形式与意义的中介系统
  • 批准号:
    23H05493
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了