Advanced Statistical Methods and Computation for Emerging Challenges in Astrophysics and Astronomy.
应对天体物理学和天文学中新挑战的先进统计方法和计算。
基本信息
- 批准号:1209232
- 负责人:
- 金额:$ 23.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The California-Boston AstroStatistics Collaboration is developing model-based strategies for statistical inference in astronomy and astrophysics. They specifically design highly structured models to account for particular complexities in the sources and data generation mechanisms with the goal of answering specific scientific questions as to the underlying astronomical and physical processes. This strategy requires state-of-the-art statistical inference, sophisticated scientific computing, and careful model-checking procedures. They will employ, extend and publicize inferential and efficient computational methods under highly-structured models that involve multi-scale structure and/or multiple levels of latent variables and incomplete data. Such models are ideally suited to account for the many physical and instrumental filters of the data generation mechanisms in astrophysics. The collaboration specifically aims to develop a mixture of parametrized and flexible multi-scale models that can be combined with complex computer-models to describe spectral, spatial, and timing data, either marginally or jointly. In astronomy, for example, the analyses of data from the same observation, but in different regimes (images, spectra, and time series) are typically conducted separately. This simplifies analysis, but sacrifices information, for example as to how a spectrum varies over time or across an image. The Collaboration proposes to develop coherent methods for multi-regime data including the joint use of high throughput spatio-spectral data to isolate and identify complex solar features and the analysis of systematic temporal variance in spectra from stellar coronae. They also propose to embed complex computer models into highly structured models, a strategy which allows the combination of multiple computer models along with physics-based parametric and/or flexible multi-scale models to derive comprehensive methods that address complexities in both the astronomical sources and the instrumentation. Building such highly structured models requires subtle tradeoffs between complexity and practicality and fitting them poses significant computational challenges. This proposal includes a suite of research projects that aim to produce efficient tailored Monte Carlo methods. Dramatic advances in space-based instrumentation over the past decade have led to the deployment of a new generation of telescopes with unprecedented capabilities. Such instruments are often tailored to meet specific scientific goals and are increasing both the quality and the quantity of data available to astronomers. Massive new surveys are resulting in enormous new catalogs containing terabytes of data, in high resolution spectrography, imaging, and time-series across the electromagnetic spectrum, and in ultra high resolution imaging of explosive dynamic processes in the solar atmosphere. Scientists wish to draw conclusions as to the physical environment and structure of astronomical source, the processes and laws which govern the birth and death of planets, stars, and galaxies, and ultimately the structure and evolution of the universe. This combination of complex instrumentation and complex science leads to massive data analytic and data-mining challenges for astronomers. The California-Boston AstroStatistics Collaboration plans to tackle these challenges using principled statistical methods derived from carefully designed astronomical and mathematical models. As the Collaboration develops methods and distributes free software, it will also educate the astronomical community as to the benefit of sophisticated statistical methods. It is expected that a fundamental impact of the proposed research will be more general acceptance and use of appropriate methods among astronomers. The Collaboration not only aims to develop new methods for astronomy but plans to use these problems as springboards in the development of new general statistical methods, especially in signal processing, multilevel modeling, computer modeling, and computational statistics. The collaboration will use the statistical challenges posed in astronomy as a testing ground for new sophisticated inferential and computational techniques that will help solve complex data analytic challenges throughout the natural, social, medical, and engineering sciences.
加利福尼亚-波士顿天体统计协作组织正在为天文学和天体物理学的统计推断制定基于模型的战略。他们专门设计了高度结构化的模型,以解决源和数据生成机制中的特殊复杂性,目的是回答有关基本天文和物理过程的特定科学问题。这种策略需要最先进的统计推断、复杂的科学计算和仔细的模型检查程序。他们将在涉及多尺度结构和/或多层次潜变量和不完整数据的高度结构化模型下采用,扩展和宣传推理和有效的计算方法。这种模型非常适合于解释天体物理学中数据生成机制的许多物理和仪器过滤器。该合作的具体目标是开发一种参数化和灵活的多尺度模型的混合物,这些模型可以与复杂的计算机模型相结合,以描述光谱,空间和时序数据,无论是边缘还是联合。例如,在天文学中,对来自同一观测但处于不同状态(图像、光谱和时间序列)的数据的分析通常是分开进行的。这简化了分析,但牺牲了信息,例如光谱如何随时间或图像而变化。协作机制提议为多状态数据制定连贯一致的方法,包括联合使用高通量空间-光谱数据来分离和识别复杂的太阳特征,以及分析恒星日冕光谱的系统性时间差异。他们还建议将复杂的计算机模型嵌入到高度结构化的模型中,这种策略允许将多个计算机模型与基于物理的参数和/或灵活的多尺度模型沿着,以获得解决天文源和仪器复杂性的综合方法。构建这种高度结构化的模型需要在复杂性和实用性之间进行微妙的权衡,拟合它们带来了重大的计算挑战。该提案包括一套研究项目,旨在产生高效的定制蒙特卡罗方法。过去十年来,天基仪器的巨大进步导致部署了具有前所未有能力的新一代望远镜。此类仪器通常是为了满足特定的科学目标而量身定制的,并且正在提高天文学家可用数据的质量和数量。大规模的新调查正在产生大量的新目录,其中包含TB级的数据,高分辨率光谱学,成像和电磁频谱的时间序列,以及太阳大气中爆炸动态过程的超高分辨率成像。科学家们希望得出的结论,如物理环境和结构的天文来源,过程和法律的诞生和死亡的行星,恒星和星系,并最终结构和演变的宇宙。这种复杂仪器和复杂科学的结合给天文学家带来了大量数据分析和数据挖掘的挑战。加州-波士顿天文统计合作计划使用从精心设计的天文和数学模型中得出的原则性统计方法来应对这些挑战。随着协作组织开发方法和分发免费软件,它还将教育天文学界了解复杂统计方法的好处。预计拟议研究的根本影响将是天文学家更普遍地接受和使用适当的方法。该合作不仅旨在开发新的天文学方法,而且计划将这些问题作为开发新的通用统计方法的跳板,特别是在信号处理,多级建模,计算机建模和计算统计方面。该合作将利用天文学中的统计挑战作为新的复杂推理和计算技术的试验场,这些技术将有助于解决整个自然,社会,医学和工程科学中的复杂数据分析挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yaming Yu其他文献
Thank God That Regressing Y on X is Not the Same as Regressing X on Y: Direct and Indirect Residual Augmentations
感谢上帝,在 X 上回归 Y 与在 Y 上回归 X 不一样:直接和间接残差增强
- DOI:
10.1080/10618600.2013.794702 - 发表时间:
2013 - 期刊:
- 影响因子:2.4
- 作者:
Xiaojin Xu;X. Meng;Yaming Yu - 通讯作者:
Yaming Yu
Stochastic Ordering of Exponential Family Distributions and Their Mixturesxk
- DOI:
10.1239/jap/1238592127 - 发表时间:
2009-03 - 期刊:
- 影响因子:1
- 作者:
Yaming Yu - 通讯作者:
Yaming Yu
Constructing machine learning-based risk prediction model for osteoarthritis in population aged 45 and above: NHANES 2011–2018
构建针对 45 岁及以上人群骨关节炎的基于机器学习的风险预测模型:NHANES 2011-2018
- DOI:
10.1038/s41598-025-99411-z - 发表时间:
2025-04-24 - 期刊:
- 影响因子:3.900
- 作者:
Yun Fu;Yaming Yu;Weichao Chen - 通讯作者:
Weichao Chen
Complete monotonicity of the entropy in the central limit theorem for gamma and inverse Gaussian distributions
- DOI:
10.1016/j.spl.2008.08.008 - 发表时间:
2009-01 - 期刊:
- 影响因子:0.8
- 作者:
Yaming Yu - 通讯作者:
Yaming Yu
On Normal Variance-Mean Mixtures
关于正态方差均值混合物
- DOI:
10.1016/j.spl.2016.07.024 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yaming Yu - 通讯作者:
Yaming Yu
Yaming Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yaming Yu', 18)}}的其他基金
Collaborative Research: New MCMC-Enabled Bayesian Methods for Complex Data and Computer Models Applied in Astronomy
协作研究:用于天文学中应用的复杂数据和计算机模型的新的 MCMC 启用贝叶斯方法
- 批准号:
0907522 - 财政年份:2009
- 资助金额:
$ 23.6万 - 项目类别:
Standard Grant
相似海外基金
The application of advanced statistical methods to investigate the epidemiology and improve the surveillance of companion animal poisonings using data from a North American poison control call centre
利用北美中毒控制呼叫中心的数据,应用先进的统计方法来调查流行病学并改进伴侣动物中毒的监测
- 批准号:
RGPIN-2016-04386 - 财政年份:2022
- 资助金额:
$ 23.6万 - 项目类别:
Discovery Grants Program - Individual
DMS/NIGMS 2: Advanced Statistical Methods for Spatially Resolved Transcriptomics Studies
DMS/NIGMS 2:空间分辨转录组学研究的高级统计方法
- 批准号:
10493427 - 财政年份:2021
- 资助金额:
$ 23.6万 - 项目类别:
DMS/NIGMS 2: Advanced Statistical Methods for Spatially Resolved Transcriptomics Studies
DMS/NIGMS 2:空间分辨转录组学研究的高级统计方法
- 批准号:
10708800 - 财政年份:2021
- 资助金额:
$ 23.6万 - 项目类别:
DMS/NIGMS 2: Advanced Statistical Methods for Spatially Resolved Transcriptomics Studies
DMS/NIGMS 2:空间分辨转录组学研究的高级统计方法
- 批准号:
10797593 - 财政年份:2021
- 资助金额:
$ 23.6万 - 项目类别:
DMS/NIGMS 2: Advanced Statistical Methods for Spatially Resolved Transcriptomics Studies
DMS/NIGMS 2:空间分辨转录组学研究的高级统计方法
- 批准号:
10378298 - 财政年份:2021
- 资助金额:
$ 23.6万 - 项目类别:
The application of advanced statistical methods to investigate the epidemiology and improve the surveillance of companion animal poisonings using data from a North American poison control call centre
利用北美中毒控制呼叫中心的数据,应用先进的统计方法来调查流行病学并改进伴侣动物中毒的监测
- 批准号:
RGPIN-2016-04386 - 财政年份:2021
- 资助金额:
$ 23.6万 - 项目类别:
Discovery Grants Program - Individual
Training in Advanced Statistical Methods in Neuroimaging and Genetics
神经影像和遗传学高级统计方法培训
- 批准号:
10200172 - 财政年份:2020
- 资助金额:
$ 23.6万 - 项目类别:
Advanced Statistical Methods for Microbiome Data Analysis
微生物组数据分析的高级统计方法
- 批准号:
10689210 - 财政年份:2020
- 资助金额:
$ 23.6万 - 项目类别:
Training in Advanced Statistical Methods in Neuroimaging and Genetics
神经影像和遗传学高级统计方法培训
- 批准号:
10655069 - 财政年份:2020
- 资助金额:
$ 23.6万 - 项目类别:
Training in Advanced Statistical Methods in Neuroimaging and Genetics
神经影像和遗传学高级统计方法培训
- 批准号:
10710064 - 财政年份:2020
- 资助金额:
$ 23.6万 - 项目类别: