EXP: Building a Learning Analytics System to Improve Student Learning and Promote Adaptive Teaching Across Multiple Domains
EXP:构建学习分析系统以改善学生学习并促进跨多个领域的适应性教学
基本信息
- 批准号:1216977
- 负责人:
- 金额:$ 49.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This PI team aims to use artificial intelligence to exploit data collected from intelligent tutoring systems to provide feedback both to students and to teachers effectively and at the right times. The team is using a new analytic approach, which introduces hierarchical modeling to learning analytics, to investigate how to better understand students' learning states. Algorithms make valid interpretable and actionable inferences from student-learning data, drawing on cognitive theories and statistics to make it work. As in tutoring systems, analysis is at the level of component skills rather than looking at end performance on a task as a whole. Research is around construction of the algorithms for deducing student learning and student learning states and around learning ways of signaling both to learners and to their teachers what concepts and skills learners understand and are capable of and which they are having trouble with. A learning dashboard will allow teachers to visualize the learning needs of a whole class and adapt activities to student needs. Feedback aimed at learners themselves will help learners recognize activities they need to engage in next to better their skills or understanding. Evaluation will include the degree to which learners development of metacognitive skills when such tools are available. The proposed work will contribute towards the next generation of intelligent tutoring systems as well as contribute to the data analytics needed to make use of large-scale educational data repositories. Because the Learning Dashboard will be independent of any particular domain, and because metacognition and self-assessment are foregrounded, the Learning Dashboard and what is learned about designing an effective learning dashboard should be applicable across disciplines and classes. The proposal brings together what is known about learning, metacognition, and intelligent tutoring systems to address timely learning analytics issues.
这个PI团队的目标是利用人工智能来利用从智能辅导系统收集的数据,在正确的时间有效地向学生和教师提供反馈。该团队正在使用一种新的分析方法,该方法将分层建模引入学习分析,以研究如何更好地了解学生的学习状态。算法从学生学习数据中做出有效的可解释和可操作的推断,利用认知理论和统计数据使其工作。在辅导系统中,分析是在组件技能的水平,而不是在整个任务的最终表现。研究是围绕构建的算法推导学生的学习和学生的学习状态和学习方式的信号都向学习者和他们的老师学习者理解什么概念和技能,有能力,他们有麻烦。一个学习仪表板将允许教师可视化整个班级的学习需求,并根据学生的需求调整活动。针对学习者本身的反馈将帮助学习者认识到他们下一步需要从事的活动,以提高他们的技能或理解。评估将包括学习者在这些工具可用的情况下发展元认知技能的程度。拟议的工作将有助于下一代智能辅导系统,并有助于利用大规模教育数据存储库所需的数据分析。因为学习仪表板将独立于任何特定的领域,并且因为元认知和自我评估是前景化的,所以学习仪表板以及关于设计有效学习仪表板的知识应该适用于跨学科和跨课程。该提案汇集了关于学习,元认知和智能辅导系统的知识,以解决及时的学习分析问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marsha Lovett其他文献
Marsha Lovett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marsha Lovett', 18)}}的其他基金
Multi-Disciplinary Symposium on "Thinking with Data"
“用数据思考”多学科研讨会
- 批准号:
0400979 - 财政年份:2004
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
Sixth International Conference on Cognitive Modeling Doctoral Consortium (ICCM 2004); July 2004; Pittsburgh, PA
第六届国际认知模型会议博士联盟(ICCM 2004);
- 批准号:
0353098 - 财政年份:2003
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
Dynamic Scaffolding to Improve Learning and Transfer of Hidden Skills
动态脚手架改善隐藏技能的学习和转移
- 批准号:
0087632 - 财政年份:2000
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
Learning and Intelligent Systems: A Next-Generation Intelligent Learning Environment for Statistical Reasoning
学习与智能系统:用于统计推理的下一代智能学习环境
- 批准号:
9720354 - 财政年份:1998
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
相似国自然基金
基于支链淀粉building blocks构建优质BE突变酶定向修饰淀粉调控机制的研究
- 批准号:31771933
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 49.63万 - 项目类别:
Collaborative R&D
Building a Calculus Active Learning Environment Equally Beneficial Across a Diverse Student Population
建立一个对不同学生群体同样有益的微积分主动学习环境
- 批准号:
2315747 - 财政年份:2024
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
Building Capacity through Professional Learning Communities to Advance Identity Integration in STEM Pre-Service Teacher Preparation
通过专业学习社区进行能力建设,促进 STEM 职前教师准备中的身份整合
- 批准号:
2345042 - 财政年份:2024
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
CAREER: Building the Merger Tree of the Milky Way with Machine Learning
职业:用机器学习构建银河系的合并树
- 批准号:
2337864 - 财政年份:2024
- 资助金额:
$ 49.63万 - 项目类别:
Continuing Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324936 - 财政年份:2024
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324937 - 财政年份:2024
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
Analysis and design of building frames using machine learning considering uncertainty of parameters
考虑参数不确定性的利用机器学习的建筑框架分析与设计
- 批准号:
23K04104 - 财政年份:2023
- 资助金额:
$ 49.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Actionable deep learning under uncertainty for carbon-centric building operations
以碳为中心的建筑运营在不确定性下可行的深度学习
- 批准号:
2875807 - 财政年份:2023
- 资助金额:
$ 49.63万 - 项目类别:
Studentship
Building Cloud-Based Experiential Blockchain Learning Modules for Cybersecurity Education
为网络安全教育构建基于云的体验式区块链学习模块
- 批准号:
2236280 - 财政年份:2023
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
POSE: Phase II: Building an Open-Source Ecosystem for Deep-Learning Hardware-Software Co-Design
POSE:第二阶段:构建深度学习软硬件协同设计的开源生态系统
- 批准号:
2303735 - 财政年份:2023
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant