Understanding stochasticity in cancer recurrence timing

了解癌症复发时间的随机性

基本信息

  • 批准号:
    1224362
  • 负责人:
  • 金额:
    $ 27.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

Mutation-induced drug resistance represents a major obstacle in cancer treatment and often causes the failure of therapies and tumor recurrence. The time at which cancer recurrence occurs (i.e., survival benefit of therapy) is governed by a complex balance between many factors such as initial tumor size, mutation rates, the type/number of resistance mechanisms, and drug efficacy and schedule. This research aims to develop a comprehensive mathematical understanding of how these factors conspire to control the temporal dynamics of the evolutionary processes driving cancer recurrence, using branching process models of tumor growth. The first part of the work will focus on developing a detailed understanding of the temporal dynamics of cancer recurrence, under the basic assumptions that tumor cell populations are ?well-mixed? in a constant selective environment. The analysis will characterize both mean dynamics and fluctuations in the system due to both demographic stochasticity and random mutational fitness changes. In the second part of the work, the investigators will relax these basic assumptions to quantify and compare the effects of additional factors that may significantly impact recurrence dynamics. These additional factors include temporally varying selective environments, spatial structure and inhomogeneity, and hierarchical population structure. All of these investigations will be performed using stochastic process models of escape from extinction, and both analytical and computational tools will be utilized to study recurrence dynamics.This research will lead to a better understanding of the mechanisms driving variability in patterns of cancer progression following acquired resistance to treatment. The results can eventually aid in the development of better statistical tools for prognosis, evaluating drug efficacy, and improving treatment strategies. For example, an understanding of how the timing of cancer recurrence reveals information about the composition or prior genetic history of the tumor can aid in determining optimal treatment strategies post-recurrence. In addition, this project will contribute to a general mathematical understanding of the dynamics of escape from population extinction. Thus, the theory developed will be broadly applicable, with minimal extension, to understanding similar issues in evolution, health (e.g. bacterial and viral drug resistance), and ecology. This project will support for trainees at the undergraduate, graduate and postdoctoral levels in research at the interface of mathematics, biology, and medicine.
突变导致的耐药性是癌症治疗的主要障碍,经常导致治疗失败和肿瘤复发。癌症复发的时间(即治疗的生存益处)取决于许多因素之间的复杂平衡,如初始肿瘤大小、突变率、耐药机制的类型/数量以及药物疗效和方案。这项研究的目的是利用肿瘤生长的分支过程模型,对这些因素如何协同控制推动癌症复发的进化过程的时间动力学进行全面的数学理解。这项工作的第一部分将侧重于在肿瘤细胞群体混合良好的基本假设下,对癌症复发的时间动力学进行详细的理解。在一个不断选择的环境中。该分析将表征由于人口随机性和随机突变适应度变化而导致的系统中的平均动态和波动。在这项工作的第二部分,研究人员将放松这些基本假设,以量化和比较可能显著影响复发动力学的其他因素的影响。这些附加因素包括时间变化的选择性环境、空间结构和不均质性以及等级种群结构。所有这些研究都将使用逃脱灭绝的随机过程模型进行,并将利用分析和计算工具来研究复发动力学。这项研究将有助于更好地理解获得性耐药后癌症进展模式中驱动变异的机制。这些结果最终可以帮助开发更好的统计工具来预测预后、评估药物疗效和改进治疗策略。例如,了解癌症复发的时间如何揭示有关肿瘤成分或先前遗传史的信息,有助于确定复发后的最佳治疗策略。此外,该项目还将有助于从数学上对逃脱种群灭绝的动态进行一般的理解。因此,开发的理论将广泛适用于理解进化、健康(例如细菌和病毒耐药性)和生态学中的类似问题。该项目将支持本科生、研究生和博士后在数学、生物和医学方面的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jasmine Foo其他文献

Modeling critical dosing strategies for stromal-induced resistance to cancer therapy
为基质诱导的癌症治疗耐药性建模关键给药策略
  • DOI:
    10.1038/s41540-025-00495-0
  • 发表时间:
    2025-02-06
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Anna K. Kraut;Colleen M. Garvey;Carly Strelez;Shannon M. Mumenthaler;Jasmine Foo
  • 通讯作者:
    Jasmine Foo
Portal Hypertension: Clinical and Physiological Aspects
门脉高压:临床和生理方面
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    39.2
  • 作者:
    Aaron Li;Danika Kibby;Jasmine Foo
  • 通讯作者:
    Jasmine Foo
Dominant species predict plant richness and biomass in global grasslands
优势物种预测全球草原的植物丰富度和生物量
  • DOI:
    10.1038/s41559-025-02701-y
  • 发表时间:
    2025-05-13
  • 期刊:
  • 影响因子:
    14.500
  • 作者:
    Pengfei Zhang;Eric W. Seabloom;Jasmine Foo;Andrew S. MacDougall;W. Stanley Harpole;Peter B. Adler;Yann Hautier;Nico Eisenhauer;Marie Spohn;Jonathan D. Bakker;Ylva Lekberg;Alyssa L. Young;Clinton Carbutt;Anita C. Risch;Pablo L. Peri;Nicholas G. Smith;Carly J. Stevens;Suzanne M. Prober;Johannes M. H. Knops;Glenda M. Wardle;Christopher R. Dickman;Anne Ebeling;Christiane Roscher;Holly M. Martinson;Jason P. Martina;Sally A. Power;Yujie Niu;Zhengwei Ren;Guozhen Du;Risto Virtanen;Pedro Tognetti;Michelle J. Tedder;Anke Jentsch;Jane A. Catford;Elizabeth T. Borer
  • 通讯作者:
    Elizabeth T. Borer

Jasmine Foo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jasmine Foo', 18)}}的其他基金

Evolutionary dynamics of non-genetic mechanisms of drug resistance in cancer
癌症耐药性非遗传机制的进化动力学
  • 批准号:
    2052465
  • 财政年份:
    2021
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
RoL: FELS - Workshop on Multiscale Modeling in Biology
RoL:FELS - 生物学多尺度建模研讨会
  • 批准号:
    1839112
  • 财政年份:
    2018
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
CAREER: Stochastic Models of Cancer Evolution
职业:癌症进化的随机模型
  • 批准号:
    1349724
  • 财政年份:
    2014
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Stochasticity and Resilience in Reinforcement Learning: From Single to Multiple Agents
职业:强化学习中的随机性和弹性:从单个智能体到多个智能体
  • 批准号:
    2339794
  • 财政年份:
    2024
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
eMB: Collaborative Research: Stochasticity in ovarian aging and biotechnologies for menopause delay
eMB:合作研究:卵巢衰老的随机性和延迟绝经的生物技术
  • 批准号:
    2325259
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Design: US-Sao Paulo: The roles of stochasticity and spatial context in dynamics of functional diversity under global change
合作研究:BoCP-设计:美国-圣保罗:随机性和空间背景在全球变化下功能多样性动态中的作用
  • 批准号:
    2225096
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Design: US-Sao Paulo: The roles of stochasticity and spatial context in dynamics of functional diversity under global change
合作研究:BoCP-设计:美国-圣保罗:随机性和空间背景在全球变化下功能多样性动态中的作用
  • 批准号:
    2225098
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Stochasticity in ovarian aging and biotechnologies for menopause delay
eMB:合作研究:卵巢衰老的随机性和延迟绝经的生物技术
  • 批准号:
    2325258
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
Integrative analysis of the stochasticity of single-cell omics data for predicting pioneerness of transcription factors
单细胞组学数据随机性的综合分析用于预测转录因子的先驱性
  • 批准号:
    23K14165
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantifying the cognitive processes supporting computations of stochasticity and volatility in humans
量化支持人类随机性和波动性计算的认知过程
  • 批准号:
    10732422
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
Imaging metrics of neuronal stochasticity and brain resilience
神经元随机性和大脑弹性的成像指标
  • 批准号:
    489191
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Operating Grants
Building a synthetic chemical synapse through harnessed stochasticity
通过利用随机性构建合成化学突触
  • 批准号:
    DE230100684
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: BoCP-Design: US-Sao Paulo: The roles of stochasticity and spatial context in dynamics of functional diversity under global change
合作研究:BoCP-设计:美国-圣保罗:随机性和空间背景在全球变化下功能多样性动态中的作用
  • 批准号:
    2225097
  • 财政年份:
    2023
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了