SEP: Collaborative: Achieving a Sustainable Energy Pathway for Wind Turbine Blade Manufacturing
SEP:协作:实现风力涡轮机叶片制造的可持续能源途径
基本信息
- 批准号:1230884
- 负责人:
- 金额:$ 151万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The NSF Sustainable Energy pathways (SEP) Program, under the umbrella of the NSF Science, Engineering and Education for Sustainability (SEES) initiative, will support the research program of Prof. Christopher Niezrecki and co-workers at the University of Massachusetts, Lowell, and Prof. Janet Twomey and co-workers at Wichita State University. The objective of this highly multidisciplinary study is the preparation of new forms of bio-derived materials for next generation wind turbine blades. These blades will be designed with the mechanical performance, economic viability, and environmental life cycle to enable sustainable wind energy pathways. Past research on biobased polymers has focused on thermoplastics that do not have the creep resistance and other properties necessary for significant structural applications. This project will focus on thermoset epoxies that are only a single reaction step from vegetable oil (a consistent, readily available feedstock), thus minimizing energy use and cost. Additionally, by developing an understanding of molecular-level thermal reworkability in composites through the inclusion of an appropriate catalyst, this work will enable a new end-of-life paradigm. Scaled test structures with mechanical and dynamic features comparable to utility-scale wind turbine blades will be constructed and their performance evaluated. Using these results new materials will be able to be quickly assessed without full scale tests. An environmental life cycle impact analysis will highlight areas for improved sustainability in the design of the biomaterials and end-of-life options for blades. An economic evaluation along with life cycle cost and toxic use analyses will provide a comparative economic evaluation of bio-derived alternatives to traditional petroleum-based thermosets along with the impact of converting to bio-based wind turbine manufacturing on job creation, education, and skills requirements.With an expectation of growth in the U.S. to 170,000 turbines in 2030, wind energy represents a renewable resource to address 20% of the U.S. energy demand. From a systems point of view, this growth creates a need to dispose of well over 34,000 blades/year (each as large as 62 m long and weighing 18 tons) in the U.S. and approximately five times as many globally. Presently, nearly all of these blades are manufactured from glass fiber composites containing large amounts of petroleum-based epoxy resins and at their end of life they are very difficult to recycle. Spent blades are either land-filled, burned to extract heat for co-generation of electricity, or cut up and used as filler in construction. This project will determine how to effectively replace existing petroleum-based epoxy resins with bio-based materials that are reworkable so that they can be repaired and/or their materials can be reused at the end-of-life. Concurrently the impacts of the new blades on the economy, wind industry, environment, and society will be studied. Both graduate and undergraduate students will be exposed to technical and nontechnical problems important to industry, and a strong outreach effort will be implemented using demonstrations to motivate the interest of women and K-12 students in science and engineering. Wind Energy Research Workshops will be organized to serve a national audience of industry participants, scientists, and engineers.This project will develop a transformative approach to the manufacturing of composites in general and wind turbine blades in particular. This work will lead to composite manufacturing that is more sustainable and less reliant on petroleum-based resins while enabling effective composite repair and recycling. The research will impact not only the wind industry, but many other areas of composite usage.
NSF 可持续能源途径 (SEP) 计划隶属于 NSF 科学、工程和可持续发展教育 (SEES) 计划,将支持马萨诸塞州洛厄尔大学 Christopher Niezrecki 教授及其同事以及威奇托州立大学 Janet Twomey 教授及其同事的研究计划。这项高度多学科研究的目标是为下一代风力涡轮机叶片制备新型生物衍生材料。这些叶片的设计将考虑机械性能、经济可行性和环境生命周期,以实现可持续的风能途径。过去对生物基聚合物的研究主要集中在热塑性塑料上,这些热塑性塑料不具备重要结构应用所需的抗蠕变性和其他特性。该项目将重点关注热固性环氧树脂,该环氧树脂仅是植物油(一种一致的、易于获得的原料)的一个反应步骤,从而最大限度地减少能源使用和成本。 此外,通过加入适当的催化剂,加深对复合材料分子级热可再加工性的理解,这项工作将实现新的报废范例。 将建造具有与公用事业规模风力涡轮机叶片相当的机械和动态特性的规模测试结构,并对其性能进行评估。利用这些结果,无需进行全面测试即可快速评估新材料。 环境生命周期影响分析将重点关注生物材料设计和叶片报废选项中可提高可持续性的领域。经济评估以及生命周期成本和毒性使用分析将对传统石油基热固性材料的生物衍生替代品进行比较经济评估,以及转向生物基风力涡轮机制造对创造就业机会、教育和技能要求的影响。预计到 2030 年,美国涡轮机数量将增长到 170,000 台,风能是一种可满足美国能源需求 20% 的可再生资源。从系统角度来看,这种增长导致美国每年需要处理超过 34,000 个叶片(每个叶片长达 62 m,重 18 吨),这一数字约为全球的五倍。目前,几乎所有这些叶片都是由含有大量石油基环氧树脂的玻璃纤维复合材料制成,在使用寿命结束时很难回收。用过的叶片要么被填埋,要么被燃烧以提取热量用于热电联产,要么被切割并用作建筑填料。该项目将确定如何用可再加工的生物基材料有效地取代现有的石油基环氧树脂,以便可以对其进行修复和/或其材料在使用寿命结束时可以重复使用。同时还将研究新型叶片对经济、风电产业、环境和社会的影响。 研究生和本科生都将接触到对行业重要的技术和非技术问题,并将通过演示来实施强有力的外展工作,以激发女性和 K-12 学生对科学和工程的兴趣。 将组织风能研究研讨会,为全国的行业参与者、科学家和工程师提供服务。该项目将开发一种变革性的方法来制造一般复合材料,特别是风力涡轮机叶片。这项工作将使复合材料制造更加可持续,减少对石油基树脂的依赖,同时实现有效的复合材料修复和回收。这项研究不仅会影响风能行业,还会影响复合材料使用的许多其他领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Niezrecki其他文献
HT-LIP Model based Robust Control of Quadrupedal Robot Locomotion under Unknown Vertical Ground Motion
未知地面垂直运动下基于HT-LIP模型的四足机器人运动鲁棒控制
- DOI:
10.48550/arxiv.2403.16262 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Amir Iqbal;Sushant Veer;Christopher Niezrecki;Yan Gu - 通讯作者:
Yan Gu
Investigating the impact of wind speed variability on optimal sizing of hybrid wind-hydrogen microgrids for reliable power supply
研究风速变化对混合式风光氢微电网最优规模以实现可靠供电的影响
- DOI:
10.1016/j.ijhydene.2025.01.444 - 发表时间:
2025-03-06 - 期刊:
- 影响因子:8.300
- 作者:
Victor Eniola;Jack Cimorelli;Christopher Niezrecki;David Willis;Xinfang Jin - 通讯作者:
Xinfang Jin
IoT acoustic sensor design and antenna selection for a wind turbine structural health monitoring system
风力涡轮机结构健康监测系统的物联网声学传感器设计和天线选择
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Calvin Alexander Ng;Connor Pozzi;Sage Lyon;M. Inalpolat;Christopher Niezrecki;Yan Luo - 通讯作者:
Yan Luo
Sensitivity analysis of unmanned aerial vehicle-borne 3D point cloud reconstruction from infrared images
基于红外图像的无人机载三维点云重建的敏感性分析
- DOI:
10.1016/j.jobe.2022.105070 - 发表时间:
2022-10-15 - 期刊:
- 影响因子:7.400
- 作者:
Shweta Dabetwar;Nitin Nagesh Kulkarni;Marco Angelosanti;Christopher Niezrecki;Alessandro Sabato - 通讯作者:
Alessandro Sabato
Christopher Niezrecki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Niezrecki', 18)}}的其他基金
Phase II IUCRC at University of Massachusetts Lowell: Center for Wind Energy Science, Technology and Research (WindSTAR)
马萨诸塞大学洛厄尔分校的第二阶段 IUCRC:风能科学、技术和研究中心 (WindSTAR)
- 批准号:
1916715 - 财政年份:2019
- 资助金额:
$ 151万 - 项目类别:
Continuing Grant
I/UCRC: Wind Energy, Science, Technology, and Research (WindSTAR)
I/UCRC:风能、科学、技术和研究 (WindSTAR)
- 批准号:
1362022 - 财政年份:2014
- 资助金额:
$ 151万 - 项目类别:
Continuing Grant
Planning Grant: I/UCRC for Wind Energy, Science, Technology, and Research (WindSTAR)
规划补助金:I/UCRC 风能、科学、技术和研究 (WindSTAR)
- 批准号:
1238307 - 财政年份:2012
- 资助金额:
$ 151万 - 项目类别:
Standard Grant
Workshop: 2011 Wind Energy Research Workshop, Lowell, MA, August 2011
研讨会:2011 年风能研究研讨会,马萨诸塞州洛厄尔,2011 年 8 月
- 批准号:
1129719 - 财政年份:2011
- 资助金额:
$ 151万 - 项目类别:
Standard Grant
Dynamic Stress-Strain Prediction of Vibrating Structures in Operation
运行中振动结构的动态应力应变预测
- 批准号:
0900534 - 财政年份:2009
- 资助金额:
$ 151万 - 项目类别:
Standard Grant
MRI: Acquisition of A 3D Scanning Laser Vibrometer
MRI:购买 3D 扫描激光测振仪
- 批准号:
0722469 - 财政年份:2007
- 资助金额:
$ 151万 - 项目类别:
Standard Grant
相似海外基金
FW-HTF-T/Collaborative Research: Occupational Exoskeletons and the Human-Technology Partnership: Achieving Scale and Integration into the Future of Work
FW-HTF-T/合作研究:职业外骨骼和人类技术伙伴关系:实现规模化并融入未来的工作
- 批准号:
2202862 - 财政年份:2022
- 资助金额:
$ 151万 - 项目类别:
Standard Grant
Achieving Outstanding Cardiovascular Health Outcomes for All Ohioans: a Statewide Cardiovascular Health Collaborative (Cardio-OH)
为所有俄亥俄州人实现出色的心血管健康成果:全州心血管健康合作组织 (Cardio-OH)
- 批准号:
10543057 - 财政年份:2021
- 资助金额:
$ 151万 - 项目类别:
Collaborative Research: Achieving a New Understanding of Solar Flare Termination Shocks
合作研究:对太阳耀斑终止激波有了新的认识
- 批准号:
2108853 - 财政年份:2021
- 资助金额:
$ 151万 - 项目类别:
Continuing Grant
FW-HTF-T/Collaborative Research: Occupational Exoskeletons and the Human-Technology Partnership: Achieving Scale and Integration into the Future of Work
FW-HTF-T/合作研究:职业外骨骼和人类技术伙伴关系:实现规模化并融入未来的工作
- 批准号:
2128926 - 财政年份:2021
- 资助金额:
$ 151万 - 项目类别:
Standard Grant
FW-HTF-T/Collaborative Research: Occupational Exoskeletons and the Human-Technology Partnership: Achieving Scale and Integration into the Future of Work
FW-HTF-T/合作研究:职业外骨骼和人类技术伙伴关系:实现规模化并融入未来的工作
- 批准号:
2128946 - 财政年份:2021
- 资助金额:
$ 151万 - 项目类别:
Standard Grant
Collaborative Research: Achieving a New Understanding of Solar Flare Termination Shocks
合作研究:对太阳耀斑终止激波有了新的认识
- 批准号:
2107745 - 财政年份:2021
- 资助金额:
$ 151万 - 项目类别:
Continuing Grant
Collaborative Research: Achieving a New Understanding of Solar Flare Termination Shocks
合作研究:对太阳耀斑终止激波有了新的认识
- 批准号:
2108438 - 财政年份:2021
- 资助金额:
$ 151万 - 项目类别:
Continuing Grant
Collaborative Research: Achieving a New Understanding of Solar Flare Termination Shocks
合作研究:对太阳耀斑终止激波有了新的认识
- 批准号:
2109154 - 财政年份:2021
- 资助金额:
$ 151万 - 项目类别:
Continuing Grant
Achieving Outstanding Cardiovascular Health Outcomes for All Ohioans: a Statewide Cardiovascular Health Collaborative (Cardio-OH)
为所有俄亥俄州人实现出色的心血管健康成果:全州心血管健康合作组织 (Cardio-OH)
- 批准号:
10321968 - 财政年份:2021
- 资助金额:
$ 151万 - 项目类别:
Belmont Forum Collaborative Research: OCEAN Sustainability Pathways for Achieving Conflict Transformation
贝尔蒙特论坛合作研究:实现冲突转化的海洋可持续发展途径
- 批准号:
2030241 - 财政年份:2021
- 资助金额:
$ 151万 - 项目类别:
Continuing Grant