Multi-Frequency Multi-Parametric Acoustophoretic Microfluidic System for Particle and Cell Separation

用于颗粒和细胞分离的多频率多参数声泳微流系统

基本信息

  • 批准号:
    1232251
  • 负责人:
  • 金额:
    $ 38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

PI: Kim, Yong-JoeInstitution: Texas A&M University Intellectural Merit: The objectives of this project are (1) to develop novel, transformative, two- and three-dimensional numerical modeling methods to analyze acoustophoretic separation of particles and cells in microfluidic systems under multi-frequency acoustic excitations, and (2) to develop an acoustophoretic microfluidic platform for separating particles and cells having different vibro-acoustic properties and validating the numerical models experimentally. Compressibility is an interesting physical property that can be utilized in label-free separation; however, systems capable of continuous and simultaneous label-free separation of particles and cells based on both their sizes and compressibility at high throughput do not exist. Acoustophoresis-based microfluidic separation utilizes intrinsic differences in vibro-acoustic properties of target samples under acoustic excitations, and can be achieved using simple microfluidic systems without need for cumbersome sample preparation steps. Thus, this approach has gained significant interest as the most viable label-free separation method in terms of its strong force generation, high throughput, high specificity, and low capital and operation cost. However, the design of state-of-the-art acoustophoretic microfluidic systems has been mainly derived from a simplistic one-dimensional analytical acoustic model in a "static" fluid medium. Therefore, it is not possible to consider the real-world effects of two- or three-dimensional geometries, "moving" fluid media, and viscous boundary layers that significantly influence the motion of particles and cells. In this analytical model, particles or cells are also modeled as homogenous, compressible spheres to consider only their "static" physical characteristics, and their frequency-dependent vibro-acoustic characteristics cannot be analyzed. The proposed methods address these deficiencies to significantly improve the predictability and specificity of the acoustophoretic separation. Novel particle and cell models are also proposed to understand their frequency-dependent, vibro-acoustic characteristics. Broader Impact: A transformative, multi-frequency, multi-parametric, acoustophoretic microfluidic platform enabled by these new modeling capabilities and utilizing the frequency-dependent vibro-acoustic properties will allow simultaneous fractionation of complex samples. This project will provide undergraduate and graduate students an excellent interdisciplinary research opportunity combining acoustics, microfluidics, lab-on-a-chip, biology, and computational physics. In particular, this work will (1) provide research opportunities and training for highly motivated undergraduate students and underrepresented minorities, and (2) expand the formal classroom curriculum in mechanical and electrical engineering to include learning objectives in microfluidic lab-chip systems and acoustophoretic separation. The results of the proposed research will be disseminated through peer-reviewed journal publications and presentations at professional conferences and used to enrich teaching materials for undergraduate and graduate courses. A publicly-available, acoustophoretic modeling method as proposed here will significantly advance the design of acoustophoretic separation systems by enabling "virtual reality" prototyping.
PI:Kim, Yong-Joe 机构:德克萨斯 A&M 大学 智力优势:该项目的目标是 (1) 开发新颖的、变革性的二维和三维数值建模方法,以分析多频声激励下微流体系统中颗粒和细胞的声泳分离,以及 (2) 开发声泳微流体平台 分离具有不同振动声学特性的颗粒和细胞,并通过实验验证数值模型。 可压缩性是一个有趣的物理特性,可用于无标记分离;然而,能够在高通量下根据颗粒和细胞的尺寸和可压缩性连续且同时无标记地分离颗粒和细胞的系统并不存在。 基于声泳的微流体分离利用了目标样品在声激励下振动声学特性的内在差异,并且可以使用简单的微流体系统来实现,而不需要繁琐的样品制备步骤。因此,这种方法因其强大的作用力产生、高通量、高特异性以及低资本和运营成本而作为最可行的无标记分离方法而引起了人们的广泛兴趣。 然而,最先进的声泳微流体系统的设计主要源自“静态”流体介质中的简单一维分析声学模型。 因此,不可能考虑显着影响颗粒和细胞运动的二维或三维几何形状、“移动”流体介质和粘性边界层的现实世界效应。 在此分析模型中,颗粒或细胞也被建模为均质、可压缩球体,仅考虑它们的“静态”物理特性,并且无法分析它们与频率相关的振动声学特性。 所提出的方法解决了这些缺陷,以显着提高声泳分离的可预测性和特异性。 还提出了新的粒子和细胞模型来了解它们的频率相关的振动声学特性。 更广泛的影响:通过这些新的建模功能并利用频率相关的振动声学特性实现的变革性、多频率、多参数、声泳微流体平台将允许同时分离复杂样品。该项目将为本科生和研究生提供结合声学、微流体、芯片实验室、生物学和计算物理的绝佳跨学科研究机会。特别是,这项工作将(1)为积极性高的本科生和代表性不足的少数族裔提供研究机会和培训,以及(2)扩展机械和电气工程的正式课堂课程,以包括微流控实验室芯片系统和声泳分离的学习目标。 拟议研究的结果将通过同行评审的期刊出版物和专业会议上的演讲进行传播,并用于丰富本科生和研究生课程的教材。 这里提出的公开可用的声泳建模方法将通过实现“虚拟现实”原型设计来显着推进声泳分离系统的设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yong Joe Kim其他文献

Yong Joe Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

转录延伸因子参与粗糙脉孢菌生物钟基因frequency表达调控分子机制的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Back-conversion suppressed optical parametric frequency conversion: Nonlinear evolution dynamics for overcoming longstanding device limitations
职业:反向转换抑制光学参量频率转换:克服长期存在的设备限制的非线性演化动力学
  • 批准号:
    1944653
  • 财政年份:
    2020
  • 资助金额:
    $ 38万
  • 项目类别:
    Continuing Grant
Development of backward terahertz-wave parametric oscillator for boundary photonics bridging the frequency gap between millimeter and optical waves
开发用于边界光子学的后向太赫兹波参量振荡器,弥合毫米波和光波之间的频率差距
  • 批准号:
    18H01906
  • 财政年份:
    2018
  • 资助金额:
    $ 38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Broadly wavelength versatile mid-infra red sources based upon difference frequency generation and parametric conversion.
基于差频生成和参数转换的宽波长通用中红外光源。
  • 批准号:
    1993478
  • 财政年份:
    2017
  • 资助金额:
    $ 38万
  • 项目类别:
    Studentship
Frequency domain optical parametric generation (FOPG) for supercontinuum mid-infrared laser sources - Ì2I phase I
用于超连续谱中红外激光源的频域光学参数生成 (FOPG) - 2I 第一阶段
  • 批准号:
    508650-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 38万
  • 项目类别:
    Idea to Innovation
Development of controller design methods using non-parametric system models represented by a finite number of frequency responses
使用由有限数量的频率响应表示的非参数系统模型开发控制器设计方法
  • 批准号:
    16K14286
  • 财政年份:
    2016
  • 资助金额:
    $ 38万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Market study for supercontinuum laser sources based on frequency domain optical parametric generation.
基于频域光学参数生成的超连续谱激光源的市场研究。
  • 批准号:
    486870-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 38万
  • 项目类别:
    Idea to Innovation
Development of frequency methods for analysis and design of linear continuous periodic systems with delay by unifying the concepts of parametric transfer matrices and the calculus of Fredholm integral equations of the second kind
通过统一参数传递矩阵的概念和第二类 Fredholm 积分方程的计算,开发用于分析和设计时滞线性连续周期系统的频率方法
  • 批准号:
    215929929
  • 财政年份:
    2012
  • 资助金额:
    $ 38万
  • 项目类别:
    Research Grants
Study on parametric decay of ion cyclotron range of frequency waves
离子回旋加速器频率波范围参数衰减研究
  • 批准号:
    21540506
  • 财政年份:
    2009
  • 资助金额:
    $ 38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
D.C. Parametric and high frequency network characterization of semiconductor devices
半导体器件的直流参数和高频网络表征
  • 批准号:
    251724-2002
  • 财政年份:
    2001
  • 资助金额:
    $ 38万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)
Parametric Frequency-conversions Using Nonlinear-Optical Fibers
使用非线性光纤的参数频率转换
  • 批准号:
    11450032
  • 财政年份:
    1999
  • 资助金额:
    $ 38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了