Prognostic Methods for Battery Management Systems

电池管理系统的预测方法

基本信息

  • 批准号:
    1234451
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

The objective of this research is to develop prognostic methods for improving the safety and availability of battery-powered systems such as electric vehicles and unmanned aerial vehicles. Battery-powered systems suffer from two problems. The first is "range anxiety" problem, which refers to the fear of running out of battery power during vehicle operation. The second problem is related to the safety of a battery pack, which can rupture or even explode under certain conditions. To address these problems, an approach for predicting the (1) end-of-discharge (the time at which a battery will run out of electrical charge), and (2) remaining-useful-performance of a battery with a known level of confidence will be developed. This approach involved machine learning algorithms to address future loading conditions, unit-to-unit variations, and modeling uncertainties. This research will improve the operation readiness and safety of battery-powered systems that are used in applications ranging from commercial (electric vehicles) to defense (unmanned aerial vehicles) sectors. In 2011, President Obama announced his goal of having one million electric vehicles on the road by 2015. The proposed research will make significant contributions to reaching this target, since it can ease user concern about the safety and reliability of electric vehicles by providing robust battery state and health information in real-time, thus encouraging their widespread use. As a result, it will also decrease US dependence on foreign oil and reduce the emission of greenhouse gases. The content of this research will assist in the advancement of prognostics and health management techniques which will be disseminated to the engineering community through online graduate courses, seminars, workshops, and short courses thereby benefiting people from academia, industry and the military.
本研究的目的是开发预测方法,以提高电动汽车和无人驾驶飞行器等电池供电系统的安全性和可用性。 电池供电系统有两个问题。首先是“里程焦虑”问题,指的是车辆运行过程中担心电池电量耗尽。第二个问题与电池组的安全性有关,电池组在某些条件下可能破裂甚至爆炸。为了解决这些问题,将开发一种用于预测(1)放电结束(电池将耗尽电荷的时间)和(2)具有已知置信水平的电池的充电有用性能的方法。这种方法涉及机器学习算法,以解决未来的负载条件,单元之间的变化和建模的不确定性。这项研究将提高电池供电系统的操作准备和安全性,这些系统用于从商业(电动汽车)到国防(无人机)等领域的应用。2011年,奥巴马总统宣布了到2015年拥有100万辆电动汽车的目标。拟议的研究将为实现这一目标做出重大贡献,因为它可以通过实时提供强大的电池状态和健康信息来缓解用户对电动汽车安全性和可靠性的担忧,从而鼓励其广泛使用。因此,它还将减少美国对外国石油的依赖,并减少温室气体的排放。这项研究的内容将有助于推进生物学和健康管理技术,这些技术将通过在线研究生课程,研讨会,讲习班和短期课程传播给工程界,从而使学术界,工业界和军方的人们受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Pecht其他文献

Autonomous Health Management for PMSM Rail Vehicles through Demagnetization Monitoring and Prognosis Control
通过退磁监测和预测控制对 PMSM 轨道车辆进行自主健康管理
  • DOI:
    10.1016/j.isatra.2017.10.002
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Niu Gang;Jiang Junjie;Youn Byeng D;Michael Pecht
  • 通讯作者:
    Michael Pecht
Deep multi feature dynamic adversarial diagnosis approach of rotating machinery
旋转机械深度多特征动态对抗诊断方法
  • DOI:
    10.1088/1361-6501/ac7a94
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    佘道明;陈进;鄢小安;王虎;张鸿飞;Michael Pecht
  • 通讯作者:
    Michael Pecht
Complex system maintainability verification with limited samples
有限样本的复杂系统可维护性验证
  • DOI:
    10.1016/j.microrel.2010.09.012
  • 发表时间:
    2011-02
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Qiang Miao;Liu Liu;Yuan Feng;Michael Pecht
  • 通讯作者:
    Michael Pecht
In situ temperature measurement of a notebook computer - a case study in health and usage monitoring of electronics
笔记本电脑的原位温度测量 - 电子产品健康和使用监控的案例研究
A review and analysis of the safety labeling of lithium-ion batteries
锂离子电池安全标识的回顾与分析
  • DOI:
    10.1016/j.est.2025.116461
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    9.800
  • 作者:
    Hayder Ali;Hassan Abbas Khan;Muhammad Khalid;Michael Pecht
  • 通讯作者:
    Michael Pecht

Michael Pecht的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Pecht', 18)}}的其他基金

Work Force Retraining in Manufacturing Science & Engineering of Reliable Electronics
制造科学劳动力再培训
  • 批准号:
    9415445
  • 财政年份:
    1994
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
State IUCRC CALCE Center for Electronic Packaging
国家IUCRC CALCE电子封装中心
  • 批准号:
    9108844
  • 财政年份:
    1991
  • 资助金额:
    $ 24万
  • 项目类别:
    Cooperative Agreement
Computer Aided Life Cycle Engineering Center
计算机辅助生命周期工程中心
  • 批准号:
    8912288
  • 财政年份:
    1989
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Planning Grant to Establish an Industry/University Cooperative Research Center: CALCE/RAMCAD Center for Electronics
规划拨款建立产学合作研究中心:CALCE/RAMCAD电子中心
  • 批准号:
    8806716
  • 财政年份:
    1988
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Expedited Award for Novel Research: An Exploratory Study Into Reliable PCB Design
新颖研究加急奖:可靠 PCB 设计的探索性研究
  • 批准号:
    8615841
  • 财政年份:
    1986
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel In-Cell Instrumentation Methods for Large Format Prismatic Battery Cells project
用于大型棱柱形电池项目的新型内嵌仪器方法
  • 批准号:
    2883784
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Studentship
Accelerated Design of New Sustainable Battery Materials with Artificial Intelligence Methods
利用人工智能方法加速设计新型可持续电池材料
  • 批准号:
    2885868
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Studentship
Advanced Optimization Methods for The Design of Aluminium Based Battery Enclosures for Electric Vehicles
电动汽车铝基电池外壳设计的高级优化方法
  • 批准号:
    2891974
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Studentship
Novel Solid/Liquid Surface Electrochemistry Methods for a Safer Lithium-ion Battery: Dendrite and Dead Lithium Prevention
用于更安全锂离子电池的新型固/液表面电化学方法:枝晶和死锂的预防
  • 批准号:
    2751487
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Studentship
Advanced Battery Materials and Synthesis Methods
先进电池材料及合成方法
  • 批准号:
    572288-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    University Undergraduate Student Research Awards
Advanced Battery Materials and Synthesis Methods
先进电池材料及合成方法
  • 批准号:
    558364-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Alliance Grants
Advanced Battery Materials and Synthesis Methods
先进电池材料及合成方法
  • 批准号:
    558364-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Alliance Grants
Development of operando NMR methods for the characterisation of next generation battery technologies'
开发用于表征下一代电池技术的操作核磁共振方法
  • 批准号:
    2746557
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Studentship
Cell designs and testing methods for battery parameterisation
电池参数化的电池设计和测试方法
  • 批准号:
    2610228
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Studentship
Advanced Battery Materials and Synthesis Methods
先进电池材料及合成方法
  • 批准号:
    558364-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了