Simulation and Modeling of Turbulent Dispersion: Backward Tracking, Molecular Dispersion and Particle Inertia
湍流色散的模拟和建模:向后跟踪、分子色散和粒子惯性
基本信息
- 批准号:1235906
- 负责人:
- 金额:$ 29.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1235906YeungThe characteristic of turbulent fluid flow as an agent of efficient dispersion of contaminants, chemical reactants and particulate matter in general is of critical importance in many environmental and engineering applications.The objectives of this proposal are to pursue fundamental advances in the study of contaminant dispersion in turbulent flows, with emphasis on several aspects crucial in the linkage between basic understanding of turbulence physics and the development of the predictive tools of improved physical realism.The research will involve a tightly-coupled combination of large-scale numerical simulations enabled by the use of advanced cyberinfrastructure, and the development of novel extensions of Lagrangian stochastic modeling using a massive simulation database. The intellectual merits of this work include the unique challenges of tracking Lagrangian fluid element trajectories backwards in time, which will provide new insights in relating the trajectory data on multi-particle clusters to the local spatial structure of the flow, where intense local deformation can develop especially in conditions of high Reynolds number. When coupled with trajectories of diffusing molecules in Brownian motion relative to the fluid, this approach also connects particle paths directly to the statistics of passive scalar fluctuations arising from typically localized sources of pollutants in the environment.The effects of finite particle inertia and gravitational forces will likewise be addressed. New stochastic models accounting for these effects will be developed in collaboration between researchers with demonstrated high synergism and expertise in high-performance computing, turbulence theory and modeling.As broader impacts, this project will provide much-needed improvements in the modeling of a major fluid dynamics problem in environmental science. Improved models of turbulent dispersion expected from this work will be applicable not only to atmospheric air quality but also to accidental or terrorism-driven discharge of toxic material (where higher-order moments are important), insect behavior in agriculture (where backward tracing mimics essential organism behaviors) and windborne dispersion of seeds and other aerosol-like material (where inertia is important). Besides training a PhD student with exposure to the expertise and perspective of a senior and internationally-respected scientist, this project will provide special summer internships at Georgia Tech for undergraduate students with disabilities to be selected from a national pool of applicants. The latter arrangement will be administered via a subaward to the American Association for the Advancement of Science, which has been very active in recruiting and nurturing students from this under-represented population.
1235906 Yeung,湍流流动的特征是有效分散污染物,化学反应物和一般物质在许多环境和工程应用中至关重要的重要性。该提议的目标是追求基本进步,在构成湍流的污染物方面的污染物中的基本进步,并在湍流中的构成方面的污染物中,并且构成了这些方面的范围,并且在湍流方面的发展方面,该方面的发展方面是构成的,并且构成了范围的范围,并且构成了范围的范围,并且在湍流方面的发展方面的构成方面的构成方面的链接,并且是构成范围的范围。改进的物理现实主义的预测工具将涉及通过使用先进的网络基础结构来实现大规模数值模拟的紧密耦合组合,以及使用大量模拟数据库的Lagrangian随机建模的新型扩展发展。这项工作的智力优点包括跟踪拉格朗日流体元素轨迹的独特挑战,这将为将多粒子簇的轨迹数据与流量的局部空间结构相关联,这将提供新的见解,在此,强烈的局部变形可以在高雷诺数的条件下尤其可以发展。当与流体相对于流体中的布朗运动中扩散分子的轨迹结合时,这种方法还将粒子路径直接连接到有限粒子惯性效果和引力力在环境中典型的局部污染物来源引起的被动标量波动的统计。在研究人员之间的合作中,将开发出新的随机模型,这些模型将在高性能计算,湍流理论和建模方面表现出很高的协同作用和专业知识。随着更广泛的影响,该项目将在环境科学领域的主要流体动态问题的建模方面提供急需的改进。这项工作预期的动荡分散模型的改进模型不仅适用于大气空气质量,还适用于偶然或以恐怖主义驱动的有毒材料的排放(高阶时刻很重要),农业中的昆虫行为(落后追踪模仿基本的有机体行为)和种子和其他类似Airosol的材料(在某些情况下含量)。除了培训一名博士生以接触高级和国际尊敬的科学家的专业知识和观点外,该项目还将为佐治亚理工学院的特殊暑期实习,以为残疾的本科生提供从国家申请人群中选出的残疾人。后一种安排将通过美国科学发展协会的子宣告来管理,该协会非常积极地招募和培养这个代表性不足的人群的学生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pui-Kuen Yeung其他文献
Pui-Kuen Yeung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pui-Kuen Yeung', 18)}}的其他基金
CDS&E: Collaborative Research: CDS&E: Advances in closure modeling for turbulent flows with finite-sized particles informed by massive simulations on heterogeneous architec
CDS
- 批准号:
1953186 - 财政年份:2020
- 资助金额:
$ 29.37万 - 项目类别:
Standard Grant
A PENULTIMATE PETASCALE COMPUTATIONAL LABORATORY FOR TURBULENCE AND MAGNETOHYDRODYNAMIC TURBULENCE
倒数第二个千万亿次湍流和磁流体动力湍流计算实验室
- 批准号:
1640771 - 财政年份:2016
- 资助金额:
$ 29.37万 - 项目类别:
Standard Grant
UNS: Strained Turbulence and Mixing in Flows of a conducting fluid in a magnetic field
UNS:磁场中导电流体流动中的应变湍流和混合
- 批准号:
1510749 - 财政年份:2015
- 资助金额:
$ 29.37万 - 项目类别:
Standard Grant
EAGER: Reaching Higher in Numerical Simulations of Turbulence
EAGER:在湍流数值模拟中达到更高水平
- 批准号:
1139037 - 财政年份:2011
- 资助金额:
$ 29.37万 - 项目类别:
Standard Grant
Petascale computations for complex turbulent flows at high Reynolds number
高雷诺数下复杂湍流的千万亿次计算
- 批准号:
1036170 - 财政年份:2011
- 资助金额:
$ 29.37万 - 项目类别:
Standard Grant
Petascale Computations for Complex Turbulent Flows
复杂湍流的千万亿次计算
- 批准号:
0832634 - 财政年份:2009
- 资助金额:
$ 29.37万 - 项目类别:
Standard Grant
NSF Workshop on Cyber-Fluid Dynamics: New Frontiers in Research and Education
NSF 网络流体动力学研讨会:研究和教育新领域
- 批准号:
0735157 - 财政年份:2007
- 资助金额:
$ 29.37万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Discovery in High Reynolds Number Turbulence via Advanced Tools for Petascale SImulation and Analysis
协作研究:通过先进的千万亿次模拟和分析工具实现高雷诺数湍流的发现
- 批准号:
0749223 - 财政年份:2007
- 资助金额:
$ 29.37万 - 项目类别:
Continuing Grant
Collaborative Research: Large Numerical Simulations of Turbulence and Reynolds, Schmidt and Rossby Number Scalings
合作研究:湍流和雷诺数、施密特数和罗斯贝数缩放的大型数值模拟
- 批准号:
0553867 - 财政年份:2006
- 资助金额:
$ 29.37万 - 项目类别:
Standard Grant
Collaborative Research: Lagrangian Statistics and Acceleration in Turbulent Shear Flows: Simulation and Modeling
合作研究:湍流剪切流中的拉格朗日统计和加速:模拟和建模
- 批准号:
0328314 - 财政年份:2003
- 资助金额:
$ 29.37万 - 项目类别:
Standard Grant
相似国自然基金
热液改造型页岩成储机理研究——以松辽盆地青一段为例
- 批准号:42372150
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
定制亲疏油图案与仿生微造型耦合的复合沟槽阵列表面润滑增效机理及应用
- 批准号:52205201
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
构造型深部岩体动力灾害的孕育和发生全过程机理研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
产能共享背景下的制造型企业运营决策研究:基于信息共享与数据质量的视角
- 批准号:72271252
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
几何造型与机器学习融合的图像数据拟合问题研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
RII Track-4: NSF: Simulation and Modeling of Turbulent Flow Control via Flow-Dependent Anisotropic Surface Textures
RII Track-4:NSF:通过流相关的各向异性表面纹理进行湍流控制的模拟和建模
- 批准号:
2131942 - 财政年份:2022
- 资助金额:
$ 29.37万 - 项目类别:
Standard Grant
AI aided turbulent combustion modeling based on advanced laser diagnostics and direct numerical simulation data science
基于先进激光诊断和直接数值模拟数据科学的人工智能辅助湍流燃烧建模
- 批准号:
20H00224 - 财政年份:2020
- 资助金额:
$ 29.37万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Subgrid-Scale Modeling for Large Eddy Simulation of Soot Evolution in Turbulent Reacting Multiphase Flows to Account for Sensitivity to Fuel Composition and Properties
用于湍流反应多相流中烟灰演化的大涡模拟的亚网格尺度建模,以考虑对燃料成分和性能的敏感性
- 批准号:
517037-2018 - 财政年份:2020
- 资助金额:
$ 29.37万 - 项目类别:
Postgraduate Scholarships - Doctoral
Subgrid-Scale Modeling for Large Eddy Simulation of Soot Evolution in Turbulent Reacting Multiphase Flows to Account for Sensitivity to Fuel Composition and Properties
用于湍流反应多相流中烟灰演化的大涡模拟的亚网格尺度建模,以考虑对燃料成分和性能的敏感性
- 批准号:
517037-2018 - 财政年份:2019
- 资助金额:
$ 29.37万 - 项目类别:
Postgraduate Scholarships - Doctoral
The world's largest Direct Numerical Simulation of turbulent channel flows and its application of modeling
全球最大的湍流河道流直接数值模拟及其建模应用
- 批准号:
18K03923 - 财政年份:2018
- 资助金额:
$ 29.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)