Research Initiation Award Grant: Investigating the combinatorial structure of special classes of matrices and graphs

研究启动奖:研究特殊类别矩阵和图形的组合结构

基本信息

  • 批准号:
    1237938
  • 负责人:
  • 金额:
    $ 19.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

The Research Initiation Award entitled - Investigating the combinatorial structure of special classes of matrices and graphs - has the goal to find a test that will determine the eventual nonnegativity of reducible matrices and determine eventual properties of other classes of matrices. In dynamical systems, one is frequently interested in qualitative information regarding state evolution. Due to physical and modeling constraints arising in applications, it is of interest to impose or consider conditions for nonnegativity of the states. Such applications are directly linked to the problem of understanding the behavior of A^k as k increases. The objectives in this project will transform how we answer open questions about the nonnegativity and reducibility of large powers of matrices.An eventual property of a matrix M is a property that holds for all powers M^k, k = k0, for some positive integer k0, the power index. Eventually positive matrices and eventually nonnegative matrices have applications to control theory and have been studied since their introduction in 1978. For a fixed n, the power index of an eventually positive or eventually nonnegative n x n matrix may be arbitrarily large, so it is not possible to show a matrix is not eventually positive or not eventually nonnegative by computing powers. Perron-Frobenius theory shows several ways to test for eventual positivity and in 2010 Hogben found a test for eventual nonnegativity for matrices that are not eventually reducible. The objective of this research is to investigate the remaining class of eventually nonnegative matrices that are not well understood.
研究启动奖题为-调查的组合结构的特殊类别的矩阵和图-有一个目标,找到一个测试,将确定最终的非负性的可约矩阵,并确定最终的性质,其他类别的矩阵。在动力系统中,人们经常对关于状态演化的定性信息感兴趣。由于应用中出现的物理和建模限制,施加或考虑状态非负性的条件是有意义的。这样的应用与理解A ^k随k增加的行为的问题直接相关。这个项目的目标将改变我们如何回答关于矩阵的大幂次的非负性和约简性的开放性问题。矩阵M的最终性质是对所有幂次M ^k,k = k0成立的性质,对于某个正整数k0,幂指数。最终正矩阵和最终非负矩阵在控制理论中有应用,自1978年引入以来一直在研究。对于一个固定的n,一个最终为正或最终非负的n × n矩阵的幂指数可以是任意大的,所以不可能通过计算幂来证明一个矩阵不是最终为正或最终非负。Perron-Frobenius理论展示了几种检验最终正性的方法,2010年,Hogben发现了一种检验最终不可约矩阵的最终非负性的方法。本研究的目的是调查的最终非负矩阵,没有得到很好的理解的剩余类。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ulrica Wilson其他文献

Ulrica Wilson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ulrica Wilson', 18)}}的其他基金

Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: AIM & ICERM Research Experiences for Undergraduate Faculty (REUF)
合作研究:AIM
  • 批准号:
    2015375
  • 财政年份:
    2020
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Mathematical Sciences Institutes Diversity Initiative
合作研究:数学科学研究所多样性倡议
  • 批准号:
    1936635
  • 财政年份:
    2019
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
National Association of Mathematicians Network of Opportunities Targeting Students and Faculty at HBCUs
全国数学家协会针对 HBCU 学生和教师的机会网络
  • 批准号:
    1833234
  • 财政年份:
    2018
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Collaborative: AIM & ICERM Research Experiences for Undergraduate Faculty Workshops
合作:AIM
  • 批准号:
    1620080
  • 财政年份:
    2016
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
Collaborative: EDGE Program
协作:EDGE 计划
  • 批准号:
    1346581
  • 财政年份:
    2014
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
EDGE Program
边缘计划
  • 批准号:
    1136296
  • 财政年份:
    2011
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant

相似海外基金

Research Initiation Award: Integrated Approach Toward Examining Fecal Indicator Bacteria Trends in a Coastal Watershed
研究启动奖:检查沿海流域粪便指示细菌趋势的综合方法
  • 批准号:
    2300319
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Research Initiation Award: Turan-type problems on partially ordered sets
研究启动奖:偏序集上的图兰型问题
  • 批准号:
    2247163
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Research Initiation Award: A GNN+BiMCLSTM Based Framework to Model, Predict, and Traceback Malware Strains
研究启动奖:基于 GNN BiMCLSTM 的框架,用于建模、预测和追溯恶意软件菌株
  • 批准号:
    2300405
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
  • 批准号:
    2300445
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Research Initiation Award: Highly Stable Nanoparticle-Doped Metal-Organic Frameworks for Applications in Water Purification
研究启动奖:用于水净化应用的高度稳定的纳米颗粒掺杂金属有机框架
  • 批准号:
    2344742
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Research Initiation Award: Implementing the Next-Generation IoT Ecosystem with AI Capabilities
研究启动奖:利用人工智能能力实施下一代物联网生态系统
  • 批准号:
    2200377
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Research Initiation Award: Thermal Decomposition of Four-membered Heterocyclic Peroxides, Data Mining in Nonadiabatic Trajectories, and Chemiexcitation Efficiency
研究启动奖:四元杂环过氧化物的热分解、非绝热轨迹数据挖掘、化学激发效率
  • 批准号:
    2300321
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Research Initiation Award: Analysis of Glycoprotein Composition and Function of PGE2 EP Receptors in Mammary-derived Cells
研究启动奖:乳腺细胞中 PGE2 EP 受体的糖蛋白组成和功能分析
  • 批准号:
    2300448
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Research Initiation Award: Investigating Instructional Conditions for Robust Learning in Biology
研究启动奖:研究生物学稳健学习的教学条件
  • 批准号:
    2300454
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Research Initiation Award: Exploring Class A G-Protein Coupled Receptors (GPCRs)-Ligand Interaction through Machine Learning Approaches
研究启动奖:通过机器学习方法探索 A 类 G 蛋白偶联受体 (GPCR)-配体相互作用
  • 批准号:
    2300475
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了