Change-Point Detection for Discretely Sampled Diffusion Processes

离散采样扩散过程的变化点检测

基本信息

  • 批准号:
    208420571
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Fellowships
  • 财政年份:
    2011
  • 资助国家:
    德国
  • 起止时间:
    2010-12-31 至 2011-12-31
  • 项目状态:
    已结题

项目摘要

While in the case of discrete-time series of random variables, e.g. regression models, a lot of statistical procedures for all kinds of problems of a model change (change-point problem) already exist, it has been payed little attention to the statistical detection of such change-points in (continuous-time, non-deterministic) solutions of stochastic differential equations (diffusions) yet. Typically, a change-point denotes the time point in the observation period where the parameters determining the model change. Aim of this project is to provide a contribution to bridging the gap between discrete-time and continuous-time approaches for detecting change-points in statistical models. Toward this end, it is intended to extend the developed statistical test procedures of the own Ph.D. thesis to settings of the problem suitable for applications. E.g., stochastic differential equations represent a modern tool for mathematical modelling of financial data or of physiological processes such as the dynamics of the glucose-insulin balance and neuronal processes. Primarily at physiological models, one can benefit from the considerable experience in Copenhagen in order to adapt the mathematical assumptions to the requirements in fields of application. The focus is on obtaining the necessary information about the continuous-time evolution of the diffusion from discrete, i.e. finitely many, data. Moreover, the following generalisations of the model are planned: multidimensional parametric diffusions with also multidimensional parameters and diffusions which only exist in subsets of the whole space. In the context of this project, the intended results are several powerful test procedures including a monitoring procedure (sequential test) allowing an evaluation of the parameters already during the observation period.
而对于随机变量的离散时间序列,如回归模型,对于模型变化的各种问题(变点问题)已经有了大量的统计方法,但对于随机微分方程(扩散)的(连续时间、非确定性)解中这种变点的统计检测却很少有人关注。通常,变化点表示观测周期中决定模型的参数发生变化的时间点。这个项目的目的是提供一个贡献,以弥合离散时间和连续时间方法之间的差距,以检测统计模型中的变化点。为了达到这个目的,它的目的是扩展自己的博士论文的开发统计测试程序的设置适合应用的问题。例如,随机微分方程代表了金融数据或生理过程(如葡萄糖-胰岛素平衡和神经元过程的动力学)数学建模的现代工具。主要在生理模型方面,人们可以从哥本哈根的大量经验中受益,以便使数学假设适应应用领域的要求。重点是从离散的,即有限多的数据中获得关于扩散的连续时间演化的必要信息。此外,规划了模型的以下推广:具有多维参数的多维参数扩散和仅存在于整个空间子集中的扩散。在这个项目的背景下,预期的结果是几个强大的测试程序,包括一个监测程序(顺序测试),允许在观察期间对参数进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Stefan-Radu Mihalache其他文献

Dr. Stefan-Radu Mihalache的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

解大型非对称鞍点(Saddle Point) 问题的有效算法的研究
  • 批准号:
    60573157
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Change Point Detection for Data with Network Structure
网络结构数据变点检测
  • 批准号:
    2348640
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Fast online change point detection utilizing matrix factorisation
利用矩阵分解进行快速在线变化点检测
  • 批准号:
    2872651
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Change Point Detection for Data with Network Structure
网络结构数据变点检测
  • 批准号:
    2210358
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
3D Mapping and Change Detection in Indoor Environments Using Multisource LiDAR Point Clouds
使用多源 LiDAR 点云在室内环境中进行 3D 测绘和变化检测
  • 批准号:
    RGPIN-2022-03741
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
DMS-EPSRC: Change Point Detection and Localization in High-Dimensions: Theory and Methods
DMS-EPSRC:高维变化点检测和定位:理论和方法
  • 批准号:
    EP/V013432/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Change-point detection - theory and applications
变化点检测 - 理论与应用
  • 批准号:
    RGPIN-2016-05694
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Development of freezing point detection system for storage foods using change of permittivity during freezing of water
利用水结冰过程中介电常数的变化开发储存食品的冰点检测系统
  • 批准号:
    20K05948
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Change-point detection - theory and applications
变化点检测 - 理论与应用
  • 批准号:
    RGPIN-2016-05694
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
DMS-EPSRC: Change-Point Detection and Localization in High Dimensions: Theory and Methods
DMS-EPSRC:高维变化点检测和定位:理论和方法
  • 批准号:
    2015489
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Stability of Change Point Detection Methods
变化点检测方法的稳定性
  • 批准号:
    2906477
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了