Assessing the causes of slab seismicity through dehydration, temperature and strain: A global approach

通过脱水、温度和应变评估板片地震活动的原因:全球方法

基本信息

  • 批准号:
    1246955
  • 负责人:
  • 金额:
    $ 10.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-01-01 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

The majority of Earth's seismicity is focused at subduction zones, either in the shallow thrust zone or as intermediate-depth (~50 to 300 km depth) or deep (to ~600 km depth) slab seismicity. Intermediate-depth seismicity is commonly thought to be caused by dehydration embrittlement, in which the dehydration of hydrous minerals in the subducted crust or mantle increases the pore fluid pressure in low-permeability rocks, allowing rocks to behave brittlely; although recent studies have called this hypothesis into question due to a lack up supporting laboratory observations. Double seismic zones are obvious in some subducting slabs (e.g., Honshu), but their presence in other slabs is less clear due to the relatively large errors in hypocentral locations relative to the spacing between the two layers of seismicity, which varies among different slabs. As the lower layer of seismicity is thought to be caused by the dehydration of serpentine in the slab mantle, having a limited view of the global prevalence of double seismic zones limits the constraints on slab mantle serpentinization and dehydration. In this project, we will relocate teleseismic earthquakes within 54 small arc sections and compare these seismicity distributions with pre-existing 2D thermal and mineralogical models, with a focus on the locations of greatest dehydration of slab minerals. The double-difference relocation technique teletomoDD will be used with nested regional-global 3D velocity models, which will significantly reduce scatter and improve the absolute locations of earthquake hypocenters in comparison to existing global catalogs. By better understanding intermediate-depth seismicity and its relation to thermal and petrological models, we can gain insight to the seismogenic processes in slabs and contribute to the understanding of six key questions pertaining to subduction zones:1) What phenomenon is responsible for the majority of intermediate-depth seismicity?2) Where are double seismic zones observable?3) In double seismic zones, what is responsible for the lower layer of seismicity?4) What controls the maximum depth of slab seismicity?5) Is the distribution of slab seismicity correlated with changes in volcanism?6) Is there a relationship between slab seismicity and changes in deep plate coupling?The majority of Earth's seismicity is focused at subduction zones, where cold, dense oceanic crust and mantle descend beneath a more buoyant plate, with the ability of producing large earthquakes and volcanism. Seismicity occurs either in the shallow thrust zone, or as intermediate-depth (~50 to 300 km depth) or deep (to ~600 km depth) slab seismicity. The mechanisms that cause shallow earthquakes are relatively well understood, whereas the cause of intermediate-depth seismicity is less certain. This is due in part to the expected ductile behavior of Earth materials at high pressures and temperatures, conditions that are difficult to reproduce in the laboratory. However, by combining numerical models of temperature and mineralogical reactions within subducting crust and mantle to observations of seismicity, we can better understand what slab conditions are most closely associated with observed seismicity. In this project, we will relocate intermediate-depth earthquakes using techniques that more accurately reproduce the paths of seismic wave propagation and reduce errors in earthquake locations from existing global seismicity catalogs. We will then comprehensively compare the distributions of slab seismicity with existing temperature and mineralogical models to identify which particular reactions contribute most to the creation of potentially large intermediate-depth earthquakes.
地球上的大部分地震活动集中在俯冲带,要么是在浅层逆冲带,要么是中深度(~50 ~ 300公里深)或深层(~ 600公里深)的板块地震活动。中深度地震活动通常被认为是由脱水脆化引起的,其中俯冲地壳或地幔中含水矿物的脱水增加了低渗透岩石的孔隙流体压力,使岩石表现得脆性;尽管最近的研究由于缺乏支持的实验室观察而对这一假设提出了质疑。双地震带在一些俯冲板块(如本州)中很明显,但在其他板块中不太明显,因为相对于两层地震活动之间的间距,震源位置的误差相对较大,不同板块之间的误差也不同。由于地震活动性的下一层被认为是由板块地幔中蛇纹石的脱水引起的,因此对全球双地震带流行的有限认识限制了板块地幔蛇纹石化和脱水的约束。在这个项目中,我们将在54个小弧段内重新定位远震地震,并将这些地震活动分布与已有的二维热、矿物学模型进行比较,重点关注板状矿物脱水最严重的位置。双差定位技术teletomoDD将与嵌套的区域-全球3D速度模型一起使用,与现有的全球目录相比,这将显著减少分散并提高震源的绝对位置。通过更好地了解中深度地震活动及其与热、岩石学模型的关系,我们可以深入了解板块的孕震过程,并有助于理解与俯冲带有关的六个关键问题:1)什么现象导致了大多数中深度地震活动?2)可观测到的双地震带在哪里?3)在双震区,是什么造成了较低的地震活动性?4)是什么控制了板状地震活动的最大深度?5)板块地震活动性的分布是否与火山活动的变化有关?6)板块地震活动性与深板块耦合变化之间是否存在关系?地球上的大部分地震活动都集中在俯冲带,在那里,寒冷、致密的海洋地壳和地幔下降到一个浮力更强的板块之下,有能力产生大地震和火山活动。地震活动可以发生在浅层逆冲带,也可以发生在中深度(~50 ~ 300 km深度)或深度(~ 600 km深度)的板块地震活动。引起浅层地震的机制相对较好理解,而引起中深度地震的原因则不太确定。这在一定程度上是由于地球材料在高压和高温下的预期延展性,而这些条件很难在实验室中重现。然而,通过将俯冲地壳和地幔内温度和矿物学反应的数值模型与地震活动性观测相结合,我们可以更好地了解哪些板块条件与观测到的地震活动性最密切相关。在这个项目中,我们将使用更精确地再现地震波传播路径的技术来重新定位中深度地震,并减少现有全球地震活动目录中地震位置的误差。然后,我们将把板状地震活动性的分布与现有的温度和矿物学模型进行全面比较,以确定哪些特定的反应对潜在的大型中深度地震的产生贡献最大。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clifford Thurber其他文献

Clifford Thurber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clifford Thurber', 18)}}的其他基金

Applications of double-difference seismic attenuation tomography
双差地震衰减层析成像的应用
  • 批准号:
    2042919
  • 财政年份:
    2021
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant
Architecture of the Subduction to Strike-Slip Transition in New Zealand
新西兰俯冲到走滑过渡的结构
  • 批准号:
    1756075
  • 财政年份:
    2018
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant
Double-difference attenuation tomography method and pilot applications
双差衰减层析成像方法及试点应用
  • 批准号:
    1724685
  • 财政年份:
    2017
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant
Rapid deployment of seismic instruments around Wellington, NZ, following the November 13, 2016, magnitude 7.8 Kaikoura earthquake
2016 年 11 月 13 日凯库拉 7.8 级地震后,在新西兰惠灵顿周围快速部署地震仪器
  • 批准号:
    1717119
  • 财政年份:
    2016
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetotelluric and Seismic Investigations of the Distribution of Magmatic and Hydrous Fluids Beneath Yellowstone
合作研究:黄石地下岩浆和含水流体分布的大地电磁和地震调查
  • 批准号:
    1460061
  • 财政年份:
    2016
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetotelluric and seismic investigation of arc melt generation, delivery, and storage beneath Okmok volcano
合作研究:奥克莫克火山下方电弧熔体产生、输送和储存的大地电磁和地震调查
  • 批准号:
    1456749
  • 财政年份:
    2015
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: Simultaneous Imaging of the Megathrust and Volcanic Systems in the Aleutian Islands Using Hybrid Mini Seismic Arrays
合作研究:使用混合微型地震阵列对阿留申群岛的巨型逆冲断层和火山系统进行同步成像
  • 批准号:
    1358619
  • 财政年份:
    2014
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Continuing Grant
Relative velocity changes using ambient seismic noise at Okmok and Redoubt volcanoes, Alaska
使用阿拉斯加奥克莫克火山和堡垒火山周围地震噪声的相对速度变化
  • 批准号:
    1246975
  • 财政年份:
    2013
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant
Observations of a newly discovered fault: Tomography, locations and source mechanisms for aftershocks of the M7.1 Darfield, New Zealand earthquake
对新发现断层的观测:新西兰达菲尔德 M7.1 地震余震的断层扫描、位置和震源机制
  • 批准号:
    1141983
  • 财政年份:
    2012
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant
Coordinated Deployment of Seismic Instruments to Record Aftershocks of the September 2010 New Zealand Earthquake
协调部署地震仪器记录 2010 年 9 月新西兰地震的余震
  • 批准号:
    1102767
  • 财政年份:
    2011
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant

相似海外基金

Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
  • 批准号:
    AH/Y007654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Research Grant
Collaborative Research: Assessing the causes of the pyrosome invasion and persistence in the California Current Ecosystem
合作研究:评估加州海流生态系统中火体入侵和持续存在的原因
  • 批准号:
    2329559
  • 财政年份:
    2024
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant
Understanding causes and consequences of variation in body composition, cardiorespiratory and muscular fitness
了解身体成分、心肺和肌肉健康变化的原因和后果
  • 批准号:
    MR/Y009398/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Fellowship
RUI: Collaborative Research: Assessing the causes of the pyrosome invasion and persistence in the California Current Ecosystem
RUI:合作研究:评估加州当前生态系统中火体入侵和持续存在的原因
  • 批准号:
    2329561
  • 财政年份:
    2024
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant
Causes and Downstream Effects of 14-3-3 Phosphorylation in Synucleinopathies
突触核蛋白病中 14-3-3 磷酸化的原因和下游影响
  • 批准号:
    10606132
  • 财政年份:
    2024
  • 资助金额:
    $ 10.66万
  • 项目类别:
Collaborative Research: Assessing the causes of the pyrosome invasion and persistence in the California Current Ecosystem
合作研究:评估加州海流生态系统中火体入侵和持续存在的原因
  • 批准号:
    2329560
  • 财政年份:
    2024
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant
The Alzheimer risk factor CD2AP causes dysfunction of the brain vascular network
阿尔茨海默病危险因子CD2AP导致脑血管网络功能障碍
  • 批准号:
    481007
  • 财政年份:
    2023
  • 资助金额:
    $ 10.66万
  • 项目类别:
Invisible diversity of reef-building corals: visualization, estimation of causes and prediction of the future
造礁珊瑚的无形多样性:可视化、原因估计和未来预测
  • 批准号:
    23H00529
  • 财政年份:
    2023
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
NSFDEB-NERC: Gigante: Quantifying and upscaling the causes and drivers of death for giant tropical trees
NSFDEB-NERC:Gigante:量化和升级巨型热带树木死亡的原因和驱动因素
  • 批准号:
    NE/Y003942/1
  • 财政年份:
    2023
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Research Grant
Collaborative Research: Implicit bivalence: Testing boundaries, causes, and consequences of coactivating positive and negative implicit evaluations
合作研究:内隐二价:测试共同激活积极和消极内隐评价的边界、原因和后果
  • 批准号:
    2234933
  • 财政年份:
    2023
  • 资助金额:
    $ 10.66万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了