EAGER: Toward Scalable Life-long Representation Learning

EAGER:迈向可扩展的终身表征学习

基本信息

项目摘要

Machine learning is a powerful tool for artificial intelligence and data mining problems. However, its success critically relies on a good feature representation of the data; therefore, the problem of feature construction poses a fundamental challenge. In recent years, representation learning has emerged as a promising method for learning useful feature representations from data. However, the current state-of-the-art methods are still limited in building intelligent agents that can learn and interact with complex environments and large amounts of sensory input. Specifically, the majority of the existing methods cannot scale well to large-scale data.The goal of this project is to fill this gap by formulating a new framework that can effectively learn representations from complex environments and scale to large data. Specifically, we propose novel approaches for learning robust representations from large-scale data by (1) controlling the complexity of the feature representations and (2) adaptively modeling relevant patterns in the presence of significant amounts of irrelevant patterns or noise.Key intellectual contributions of this project will be (1) a novel framework of representation learning that provides robust representations from large amounts of unlabeled data and relatively small amounts of labeled data, and (2) theoretical and algorithmic advances for inference, learning, and related optimization problems in representation learning for large-scale, complex sensory information processing.This work will serve as a catalyst leading to applications, such as multimedia processing and search, medical image processing, speech recognition, and autonomous navigation. The results will be disseminated through publications and free software.
机器学习是解决人工智能和数据挖掘问题的有力工具。然而,它的成功关键依赖于良好的数据特征表示,因此,特征构建问题是一个根本性的挑战。近年来,表征学习已成为一种从数据中学习有用特征表征的有前途的方法。然而,目前最先进的方法仍然局限于构建能够与复杂环境和大量感觉输入学习和交互的智能代理。具体来说,现有的大多数方法不能很好地扩展到大规模数据,本项目的目标是通过制定一个新的框架来填补这一空白,该框架可以有效地从复杂环境中学习表示法,并可以扩展到大数据。具体地说,我们提出了一种从大规模数据中学习稳健表征的新方法,方法是:(1)控制特征表征的复杂性,(2)在存在大量无关模式或噪声的情况下自适应地建模相关模式。本项目的关键智力贡献将是(1)新的表征学习框架,它从大量未标记数据和相对少量的已标记数据提供稳健表征;(2)在大规模、复杂的感官信息处理的表征学习中的推理、学习和相关优化问题的理论和算法方面的进展。这项工作将成为通向应用的催化剂,例如多媒体处理和搜索,医学图像处理、语音识别和自主导航。结果将通过出版物和免费软件传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Honglak Lee其他文献

Foundation models for fast, label-free detection of glioma infiltration
用于快速、无标记检测胶质瘤浸润的基础模型
  • DOI:
    10.1038/s41586-024-08169-3
  • 发表时间:
    2024-11-13
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Akhil Kondepudi;Melike Pekmezci;Xinhai Hou;Katie Scotford;Cheng Jiang;Akshay Rao;Edward S. Harake;Asadur Chowdury;Wajd Al-Holou;Lin Wang;Aditya Pandey;Pedro R. Lowenstein;Maria G. Castro;Lisa Irina Koerner;Thomas Roetzer-Pejrimovsky;Georg Widhalm;Sandra Camelo-Piragua;Misha Movahed-Ezazi;Daniel A. Orringer;Honglak Lee;Christian Freudiger;Mitchel Berger;Shawn Hervey-Jumper;Todd Hollon
  • 通讯作者:
    Todd Hollon
IMPROVING PREFERENCE PREDICTION ACCURACY WITH FEATURE LEARNING
通过特征学习提高偏好预测准确性
  • DOI:
    10.1115/detc2014-35440
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alex Burnap;Yi Ren;Honglak Lee;Rich Gonzalez;P. Papalambros
  • 通讯作者:
    P. Papalambros
Learning Compositional Tasks from Language Instructions
从语言指令中学习作文任务
  • DOI:
    10.1609/aaai.v37i11.26561
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lajanugen Logeswaran;Wilka Carvalho;Honglak Lee
  • 通讯作者:
    Honglak Lee
Estimating and Exploring the Product Form Design Space Using Deep Generative Models
使用深度生成模型估计和探索产品形式设计空间
Subgradient Optimization for Convex Multiparametric Programming
凸多参数规划的次梯度优化
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Leverenz;Honglak Lee;M. Wiecek
  • 通讯作者:
    M. Wiecek

Honglak Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Honglak Lee', 18)}}的其他基金

CAREER: New Directions in Deep Representation Learning from Complex Multimodal Data
职业:复杂多模态数据深度表示学习的新方向
  • 批准号:
    1453651
  • 财政年份:
    2015
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:

相似海外基金

Toward Scalable Non-Cartesian Computing
迈向可扩展的非笛卡尔计算
  • 批准号:
    RGPIN-2019-05303
  • 财政年份:
    2022
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Discovery Grants Program - Individual
CRII: CNS: Toward a Scalable Geo-distributed Data Analytics System
CRII:CNS:迈向可扩展的地理分布式数据分析系统
  • 批准号:
    2153422
  • 财政年份:
    2022
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Standard Grant
Toward Scalable Non-Cartesian Computing
迈向可扩展的非笛卡尔计算
  • 批准号:
    RGPIN-2019-05303
  • 财政年份:
    2021
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Discovery Grants Program - Individual
Toward Scalable Biomarker-Based Prediction of ASD in High-Risk Infants
基于生物标志物的高危婴儿自闭症谱系障碍 (ASD) 可扩展预测
  • 批准号:
    10452439
  • 财政年份:
    2021
  • 资助金额:
    $ 11.5万
  • 项目类别:
Toward Scalable Biomarker-Based Prediction of ASD in High-Risk Infants
基于生物标志物的高危婴儿自闭症谱系障碍 (ASD) 可扩展预测
  • 批准号:
    10475316
  • 财政年份:
    2021
  • 资助金额:
    $ 11.5万
  • 项目类别:
Toward Scalable Non-Cartesian Computing
迈向可扩展的非笛卡尔计算
  • 批准号:
    RGPIN-2019-05303
  • 财政年份:
    2020
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Discovery Grants Program - Individual
Toward Scalable Non-Cartesian Computing
迈向可扩展的非笛卡尔计算
  • 批准号:
    RGPIN-2019-05303
  • 财政年份:
    2019
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Discovery Grants Program - Individual
Toward scalable biomarker-based prediction of ASD in high-risk infants
基于生物标志物的高危婴儿自闭症谱系障碍 (ASD) 可扩展预测
  • 批准号:
    10023280
  • 财政年份:
    2019
  • 资助金额:
    $ 11.5万
  • 项目类别:
Collaborative Research: CyberTraining: CIU: Toward Distributed and Scalable Personalized Cyber-Training
协作研究:网络培训:CIU:走向分布式和可扩展的个性化网络培训
  • 批准号:
    1829752
  • 财政年份:
    2018
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Standard Grant
CSR: Small: Toward a Scalable, Multi-Tenant, Edge-Cloud Infrastructure for Real-Time Computation
CSR:小:迈向可扩展、多租户、边缘云实时计算基础设施
  • 批准号:
    1815690
  • 财政年份:
    2018
  • 资助金额:
    $ 11.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了