BIGDATA: Small: DA: Collaborative Research: Real Time Observation Analysis for Healthcare Applications via Automatic Adaptation to Hardware Limitations

BIGDATA:小型:DA:协作研究:通过自动适应硬件限制对医疗保健应用进行实时观察分析

基本信息

  • 批准号:
    1251031
  • 负责人:
  • 金额:
    $ 27.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

This research seeks to develop novel machine learning algorithms that enable real-time video and sensor data analysis on large data streams given limited computational resources. The work focuses on healthcare as an application domain where real-time video analysis can prevent user-errors in operating medical devices or provide immediate alerts to caregivers about dangerous situations. The research will develop algorithms to automatically adapt data analysis approaches to maximize accuracy of analysis within a short time period despite limited available computing resources. Today's healthcare environment is significantly more technologically sophisticated than ever before. Many medical devices are now frequently used in patient's homes, ranging from simple equipment such as canes and wheelchairs to sophisticated items such as glucose meters, ambulatory infusion pumps and laptop-sized ventilators. The rapidly growing home health industry raises new safety concerns about devices being used inappropriately in the home setting. The proposed research is designed to reduce medical device related use-errors by developing computational algorithms that perform real-time video analysis and alert the patient or caregiver when medical devices are not used appropriately. The real-time video and sensor data analysis is also critical to the healthcare systems that monitor the activities of the elderly or those with disabilities in order to allow a caregiver to react immediately to an incident. New machine learning theories and algorithms will automatically adapt to hardware limitations, with the aim to learn from a large number of training examples, a prediction function that (i) is sufficiently accurate in making effective predictions and (ii) can be run efficiently on a specified computer system to deliver time critical results. Three types of prediction models are studied to address the problem of automatic hardware adaptation, including a vector-based model, a matrix-based model, and a prediction model based on a function from a Reproducing Kernel Hilbert Space (RKHS). A general framework and multiple optimization techniques are being developed to learn accurate prediction models that match limited memory and computational capacity. The new learning algorithms will be evaluated in several medical scenarios through real-time prediction of a patient's activities from observations in the large video archives collected by several healthcare related projects. The intellectual merit of the proposed work is in bridging the gap between the high complexity of a prediction model and limited computational resources, a scenario that is encountered in many application domains besides healthcare. The proposed research in machine learning algorithms and theories will make it possible to run complicated prediction algorithms on big data within the limitation of a given computing infrastructure. The developed techniques for automatic hardware adaptation will be applied to a large dataset of continuous video and sensor recordings for medically-critical activity recognition. The project's broader impacts include providing medical experts with algorithms and tools supporting novel approaches to analyzing observational data in their quest to recognize and characterize human behavior. Surveillance systems with continuous observations will be able to categorize salient events with co-located, limited hardware. Researchers with complex data from continuous streams will be able to explore their domains with greater accuracy within constrained time using their available computing resources. Similarly, large archives can be exploited as rapidly as possible with limited hardware.
这项研究旨在开发新颖的机器学习算法,以实现大型数据流的实时视频和传感器数据分析,但给定有限的计算资源。这项工作重点是医疗保健作为应用程序领域,实时视频分析可以防止操作医疗设备中的用户纠正或向看护人提供有关危险情况的警报。 该研究将开发算法以自动调整数据分析方法,尽管可用的计算资源有限,但在短时间内的分析精度最大化。当今的医疗环境比以往任何时候都更加精致。现在,许多医疗设备都经常在患者的家中使用,从甘蔗和轮椅等简单设备到精致的物品,例如葡萄糖仪,门诊输液泵和笔记本电脑大小的呼吸机。快速发展的家庭健康行业引起了人们对在家庭环境中不当使用设备使用的新安全问题。拟议的研究旨在通过开发进行实时视频分析的计算算法来减少与医疗设备相关的使用,并在不适当使用医疗设备时提醒患者或护理人员。实时视频和传感器数据分析对于监测老年人或残疾人活动的医疗保健系统也至关重要,以便让护理人员立即对事件做出反应。新的机器学习理论和算法将自动适应硬件限制,目的是从大量培训示例中学习,预测功能(i)在做出有效的预测方面非常准确,并且(ii)可以在指定的计算机系统上有效地运行以提供关键的时间结果。研究了三种类型的预测模型,以解决自动硬件适应的问题,包括基于向量的模型,基于矩阵的模型以及基于复制内核Hilbert Space(RKHS)函数的预测模型。 正在开发一般框架和多个优化技术,以学习与有限的内存和计算能力相匹配的准确预测模型。新的学习算法将在几种医疗情况下通过实时预测患者的活动来评估,从几个医疗保健相关项目收集的大型视频档案中的观察结果进行实时预测。 拟议工作的智力优点在于弥合预测模型的高复杂性与有限的计算资源之间的差距,这是一种在医疗保健以外许多应用领域中遇到的方案。机器学习算法和理论的拟议研究将使在给定计算基础架构的限制内对大数据进行复杂的预测算法。开发的用于自动硬件改编的技术将应用于一个大型的连续视频和传感器录音数据集,以进行医学关键的活动识别。 该项目的更广泛的影响包括为医学专家提供算法和工具,以支持新方法来分析观察数据以寻求认识和表征人类行为。具有连续观察的监视系统将能够通过共同置于的,有限的硬件将显着事件分类。来自连续流的复杂数据的研究人员将能够使用可用的计算资源在受约束的时间内以更高的精度探索其域。同样,可以使用有限的硬件来尽快利用大型档案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rong Jin其他文献

Anti-liver fibrosis effect of total flavonoids from Scabiosa comosa Fisch. ex Roem. et Schult. on liver fibrosis in rat models and its proteomics analysis.
Scabiosa comosa Fisch 总黄酮的抗肝纤维化作用。
  • DOI:
    10.21037/apm.2020.02.29
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Menggensilimu;Hongwei Yuan;Chunmei Zhao;Xiaomei Bao;Haisheng Wang;Jie Liang;Yuxin Yan;Chunyan Zhang;Rong Jin;Lijie Ma;Jianyu Zhang;Xiaoli Su;Yuehong Ma
  • 通讯作者:
    Yuehong Ma
The Conceptional Design and Simulation of a Foldable Lunar Vehicle
可折叠月球车的概念设计与仿真
Human-Guided Recognition of Music Score Images
人类引导的乐谱图像识别
Cigarette smoke-induced RANKL expression enhances MMP-9 production by alveolar macrophages
香烟烟雾诱导的 RANKL 表达增强肺泡巨噬细胞 MMP-9 的产生
Pedicled Superficial Temporal Fascia Sandwich Flap for Reconstruction of Severe Facial Depression
带蒂颞浅筋膜夹层皮瓣重建严重面部凹陷
  • DOI:
    10.1097/scs.0b013e31819b9e64
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Yan Zhang;Rong Jin;Yaoming Shi;Baoshan Sun;Yuguang Zhang;Yun
  • 通讯作者:
    Yun

Rong Jin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rong Jin', 18)}}的其他基金

CAREER: Large-Scale Multi-label Learning
职业:大规模多标签学习
  • 批准号:
    0643494
  • 财政年份:
    2007
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Continuing Grant

相似国自然基金

聚合物化A-DA'D-A型稠环小分子受体材料的设计、合成及其光伏性能研究
  • 批准号:
    22279094
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
聚合物化A-DA'D-A型稠环小分子受体材料的设计、合成及其光伏性能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
涤痰汤对PV- Glu/SKCa- DA能神经元通路的影响
  • 批准号:
    81774230
  • 批准年份:
    2017
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
小胶质细胞TLR3/4-TRIF信号转导对DA神经元存活的作用及机制
  • 批准号:
    81241019
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
HLrp对JAK-STAT通路的可能调控在LPS诱导小胶质细胞活化及DA能细胞损伤中的作用
  • 批准号:
    30972429
  • 批准年份:
    2009
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

BIGDATA: Small: DA: Collaborative Research: Real Time Observation Analysis for Healthcare Applications via Automatic Adaptation to Hardware Limitations
BIGDATA:小型:DA:协作研究:通过自动适应硬件限制对医疗保健应用进行实时观察分析
  • 批准号:
    1638429
  • 财政年份:
    2016
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Standard Grant
BIGDATA: Small: DA: Mining large graphs through subgraph sampling
BIGDATA:小:DA:通过子图采样挖掘大图
  • 批准号:
    1250786
  • 财政年份:
    2013
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Standard Grant
BIGDATA: Small: DA: Classification Platform for Novel Scientific Insight on Time-Series Data
BIGDATA:小型:DA:时间序列数据新科学见解的分类平台
  • 批准号:
    1251274
  • 财政年份:
    2013
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Standard Grant
BIGDATA: Small: DA: DCM: Measurement and Learning in Large-Scale Social Networks
BIGDATA:小型:DA:DCM:大规模社交网络中的测量和学习
  • 批准号:
    1251267
  • 财政年份:
    2013
  • 资助金额:
    $ 27.05万
  • 项目类别:
    Standard Grant
BIGDATA: Small DA Social Behavior Driven Modeling and Optimization of Information
BIGDATA:小型 DA 社会行为驱动的信息建模和优化
  • 批准号:
    8842138
  • 财政年份:
    2013
  • 资助金额:
    $ 27.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了