Galois Representations and Modular Forms
伽罗瓦表示和模形式
基本信息
- 批准号:1252158
- 负责人:
- 金额:$ 64.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A big theme in number theory in the last 50 years has been the relationship between automorphic forms, Galois representations and objects from algebraic geometry. There is an extensive web of extraordinary conjectures (for instance the Artin conjecture, the Shimura-Taniyama conjecture, Langlands' conjectures,Serre's conjecture and the Fontaine-Mazur conjecture) linking these three seemingly very different subjects (which relate to analysis, algebra and geometry respectively). Progress on these conjectures is currently very exciting. Under previous NSF grants the PI, with various collaborators, completed the proof of the Shimura-Taniyama conjecture; proved the local Langlands conjecture for GL(n) over a p-adic field; proved the Sato-Tate conjecture for elliptic curves over totally real fields; proved the first general automorphy lifting theorems and potential automorphy theorems for Galois representations of arbitrary dimension; and proved that the L-function of any polarized, regular, irreducible motive over a CM field has meromorphic continuation to the whole complex plane and satisfies the expected functional equation. The PI proposes to continue to improve the currently available automorphy lifting and potential automorphy theorems; to relate the cohomology of Rapoport-Zink spaces to the local Langlands conjecture for groups other than GL(n); with Kevin Buzzard and Joe Rabinoff to prove the Artin conjecture for odd degree two representations of the Galois group of a totally real field in which 5 splits completely; and to think about more speculative problems relating Galois representations and automorphic forms, for instance how to understand the case of very degenerate Hodge-Tate numbers/infinitesimal character. In addition the PI will continue his work with post-docs and, particularly, with graduate students.This circle of ideas is the one that led to Andrew Wiles' celebrated proof of Fermat's last theorem after over 300 years. They fall into the general area of arithmetic geometry - a subject that blends two of the oldest areas of mathematics: number theory and geometry. This combination has proved extraordinarily fruitful. Among its many consequences are new error correcting codes. Such codes are essential for both modern computers (hard disks) and compact disks.
在过去的50年里,数论的一个重要主题是自守形式、伽罗瓦表示和代数几何对象之间的关系。有一个广泛的网络非凡的猜想(例如阿廷猜想,志村谷山猜想,朗兰兹猜想,塞尔猜想和丰泰恩马祖猜想)连接这三个看似非常不同的主题(涉及分析,代数和几何分别)。目前,这些技术的进展非常令人兴奋。 在以前的NSF资助下,PI与各种合作者完成了Shimura-Taniyama猜想的证明;证明了p-adic域上GL(n)的局部Langlands猜想;证明了全真实的域上椭圆曲线的Sato-Tate猜想;证明了第一个一般自同构提升定理和任意维Galois表示的潜在自同构定理;证明了CM域上任意极化正则不可约运动的L-函数对整个复平面具有亚纯延拓,并满足期望的函数方程。PI提议继续改进现有的自同构提升和势自同构定理;将Rapoport-Zink空间的上同调与GL(n)以外的群的局部Langlands猜想联系起来;与Kevin Buzzard和Joe Rabinoff一起证明5完全分裂的全真实的域的Galois群的奇次二表示的Artin猜想;并考虑更多的有关伽罗瓦表示和自守形式的投机性问题,例如如何理解非常退化的Hodge-Tate数/无穷小特征的情况。此外,PI将继续他的工作与博士后,特别是与研究生。这个思想圈是导致安德鲁怀尔斯著名的证明费马最后定理后,超过300年。它们属于算术几何的一般领域-一个融合了两个最古老的数学领域的学科:数论和几何。事实证明,这种结合非常富有成效。在它的许多后果是新的纠错码。 这种代码对于现代计算机(硬盘)和光盘都是必不可少的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Taylor其他文献
Predicting the Future of Computers in Schools - A Reflection Paper?
预测学校计算机的未来 - 反思论文?
- DOI:
10.1007/978-3-642-55119-2_23 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Richard Taylor - 通讯作者:
Richard Taylor
The Analysis of Metabolites in Human Sweat: Analytical Methods and Potential Application to Investigation of Pressure Ischaemia of Soft Tissues
人体汗液中代谢物的分析:分析方法及其在软组织压力缺血研究中的潜在应用
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:2.2
- 作者:
Richard Taylor;A. Polliack;D. Bader - 通讯作者:
D. Bader
WAVE FUNCTION SCARRING AND MAGNETOTRANSPORT IN QUANTUM DOTS
量子点中的波函数疤痕和磁输运
- DOI:
10.1016/s0921-4526(98)00130-6 - 发表时间:
1998 - 期刊:
- 影响因子:2.8
- 作者:
Y. Ochiai;Y. Okubo;N. Sasaki;J. Bird;K. Ishibashi;Y. Aoyagi;T. Sugano;A. Micolich;Richard Taylor;R. Newbury;D. Vasileska;R. Akis;D. Ferry - 通讯作者:
D. Ferry
Modularity of Certain Potentially Barsotti-Tate Galois Representations
某些潜在的 Barsotti-Tate Galois 表示形式的模块化
- DOI:
10.1090/s0894-0347-99-00287-8 - 发表时间:
1999 - 期刊:
- 影响因子:3.9
- 作者:
B. Conrad;Fred Diamond;Richard Taylor - 通讯作者:
Richard Taylor
Knowledge Diffusion and Networking in the Organic Production Sector: A Case Study
有机生产领域的知识传播和网络:案例研究
- DOI:
10.1111/j.1746-692x.2006.00043.x - 发表时间:
2006 - 期刊:
- 影响因子:2.8
- 作者:
P. Morone;R. Sisto;Richard Taylor - 通讯作者:
Richard Taylor
Richard Taylor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Taylor', 18)}}的其他基金
Galois Representations and Automorphic Forms
伽罗瓦表示和自守形式
- 批准号:
1902265 - 财政年份:2019
- 资助金额:
$ 64.11万 - 项目类别:
Standard Grant
Spirocycles, Carbocycles and Heterocycles: Unified Routes via Catalyst Selection
螺环、碳环和杂环:通过催化剂选择的统一路线
- 批准号:
EP/N035119/1 - 财政年份:2016
- 资助金额:
$ 64.11万 - 项目类别:
Research Grant
Catalytic Asymmetric Dearomative Spirocyclisations
催化不对称脱芳香螺环化
- 批准号:
EP/M018601/1 - 财政年份:2015
- 资助金额:
$ 64.11万 - 项目类别:
Research Grant
Groundwater Futures in Sub-Saharan Africa
撒哈拉以南非洲地下水期货
- 批准号:
NE/M008932/1 - 财政年份:2015
- 资助金额:
$ 64.11万 - 项目类别:
Research Grant
EAGER: Accountability Through Architecture for Decentralized Systems
EAGER:通过去中心化系统架构承担责任
- 批准号:
1449159 - 财政年份:2014
- 资助金额:
$ 64.11万 - 项目类别:
Standard Grant
Groundwater recharge in Africa: identifying critical thresholds
非洲地下水补给:确定关键阈值
- 批准号:
NE/L001926/1 - 财政年份:2013
- 资助金额:
$ 64.11万 - 项目类别:
Research Grant
GroFutures: Groundwater Futures in Sub-Saharan Africa
GroFutures:撒哈拉以南非洲地下水期货
- 批准号:
NE/L002043/1 - 财政年份:2013
- 资助金额:
$ 64.11万 - 项目类别:
Research Grant
Core Capability - University of York
核心能力 - 约克大学
- 批准号:
EP/K039660/1 - 财政年份:2013
- 资助金额:
$ 64.11万 - 项目类别:
Research Grant
Cu(II)-Catalysed C-H Activation Routes to Heterocycles; Applications in Target Synthesis
Cu(II) 催化的 C-H 活化路线生成杂环;
- 批准号:
EP/J000124/1 - 财政年份:2012
- 资助金额:
$ 64.11万 - 项目类别:
Research Grant
Convergent Acyliminium Methodology: Diversity in Heterocyclic Scaffolds
收敛酰亚胺方法:杂环支架的多样性
- 批准号:
EP/J016128/1 - 财政年份:2012
- 资助金额:
$ 64.11万 - 项目类别:
Research Grant
相似海外基金
P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
- 批准号:
2401384 - 财政年份:2024
- 资助金额:
$ 64.11万 - 项目类别:
Continuing Grant
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
- 批准号:
2302284 - 财政年份:2023
- 资助金额:
$ 64.11万 - 项目类别:
Standard Grant
Congruences between modular forms, Galois representations, and arithmetic consequences
模形式、伽罗瓦表示和算术结果之间的同余
- 批准号:
2301738 - 财政年份:2023
- 资助金额:
$ 64.11万 - 项目类别:
Standard Grant
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
- 批准号:
2302285 - 财政年份:2023
- 资助金额:
$ 64.11万 - 项目类别:
Standard Grant
Galois Representations and Slopes of Modular Forms
伽罗瓦表示和模形式的斜率
- 批准号:
502345-2017 - 财政年份:2019
- 资助金额:
$ 64.11万 - 项目类别:
Postgraduate Scholarships - Doctoral
Galois Representations and Slopes of Modular Forms
伽罗瓦表示和模形式的斜率
- 批准号:
502345-2017 - 财政年份:2018
- 资助金额:
$ 64.11万 - 项目类别:
Postgraduate Scholarships - Doctoral
Galois Representations and Slopes of Modular Forms
伽罗瓦表示和模形式的斜率
- 批准号:
502345-2017 - 财政年份:2017
- 资助金额:
$ 64.11万 - 项目类别:
Postgraduate Scholarships - Doctoral
Characterizations of Galois representations associated to Hilbert modular forms
与希尔伯特模形式相关的伽罗瓦表示的特征
- 批准号:
17H07074 - 财政年份:2017
- 资助金额:
$ 64.11万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Theory of congruences of Galois representations and modular forms for function fields
函数域的伽罗瓦表示和模形式的同余理论
- 批准号:
26400016 - 财政年份:2014
- 资助金额:
$ 64.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Galois Representations and Modular Forms
伽罗瓦表示和模形式
- 批准号:
1062759 - 财政年份:2011
- 资助金额:
$ 64.11万 - 项目类别:
Continuing Grant