EAGER: Optimization without Round-off Errors

EAGER:无舍入误差的优化

基本信息

项目摘要

This Early-concept Grant for Exploratory Research (EAGER) provides funding to further develop an algorithm to solve systems of linear equations with a specific advantage over Gaussian Elimination in that the algorithm does not have round-off errors. The algorithm will be tailored and adapted to be used within existing optimization algorithms. The key property of the algorithm being further developed is that it maintains the integrality of the numbers throughout its execution. In particular, although the algorithm does contain divisions (which is crucial for the polynomial-time complexity of thealgorithm) all the divisions have a remainder of zero. A detailed complexity analysis of the algorithm will be performed; specifically, both its running time and the number of bits required to represent the numbers throughout the algorithm's execution will be investigated. A modification of the algorithm to perform LU factorizations will also be studied. Finally, the algorithm will be adapted to enable its use for the basis updates performed in state-of-the-art implementations of the revised simplex method.If successful, the outcomes of this research will lead to a deeper understanding of computational linear algebra free of round-off errors and the associated applications within optimization algorithms. In the linear programming (LP) context, this research will enable us to solve large-scale LPs exactly; this, in turn, will significantly improve the accuracy and speed of integer programming solvers. In addition, since solving systems of linear equations is a critical subroutine of many numerical algorithms, this research will impact many application areas where linear systems frequently arise, including economics, physics, chemistry, and engineering.
这个早期概念的探索性研究补助金(EAGER)提供资金,以进一步开发一种算法来解决线性方程组,该算法比高斯消元法具有特定的优势,因为该算法没有舍入误差。该算法将被定制和调整,以在现有的优化算法中使用。正在进一步开发的算法的关键属性是它在整个执行过程中保持数字的完整性。特别是,尽管算法确实包含除法(这对算法的多项式时间复杂度至关重要),但所有除法的余数都为零。一个详细的复杂性分析的算法将进行具体的,它的运行时间和所需的位数来表示整个算法的执行将进行调查。也将研究修改的算法进行LU分解。最后,该算法将进行调整,使其用于基础更新的国家的最先进的实现的修订simplex方法。如果成功的话,这项研究的成果将导致更深入地了解计算线性代数的舍入误差和相关的应用程序内的优化算法。在线性规划(LP)的背景下,这项研究将使我们能够解决大规模的LP准确,这反过来,将显着提高整数规划求解器的精度和速度。此外,由于求解线性方程组是许多数值算法的关键子程序,因此这项研究将影响线性系统经常出现的许多应用领域,包括经济学,物理学,化学和工程学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erick Moreno-Centeno其他文献

Exact QR factorizations of rectangular matrices
矩形矩阵的精确 QR 分解
  • DOI:
    10.1007/s11590-024-02095-z
  • 发表时间:
    2024-02-22
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Christopher Lourenco;Erick Moreno-Centeno
  • 通讯作者:
    Erick Moreno-Centeno

Erick Moreno-Centeno的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erick Moreno-Centeno', 18)}}的其他基金

Elements: Software: Roundoff-Error-Free Algorithms for Large-Scale, Sparse Systems of Linear Equations and Optimization
要素:软件:大规模稀疏线性方程系统的无舍入误差算法和优化
  • 批准号:
    1835499
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
EAGER: Topology Control for Enhancing the Reliability of the National Power Grid
EAGER:拓扑控制增强国家电网可靠性
  • 批准号:
    1451036
  • 财政年份:
    2014
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
  • 批准号:
    2349338
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
  • 批准号:
    AH/Z000041/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Research Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了