CAREER: Efficient Statistical Inference using Neuroimaging data for Sample Enrichment and Optimizing Power
职业:使用神经影像数据进行有效的统计推断以富集样本并优化功效
基本信息
- 批准号:1252725
- 负责人:
- 金额:$ 47.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-15 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hypothesis testing on neuroimaging data traditionally has made use of classical statistical tests (on uni-variate response variables). This makes sub-optimal use of the structure of images, particularly problematic if the two groups being tested have weak differences to begin with. Failure to detect statistically significant differences may imply failure of the experiment itself. Acquiring more images is expensive but also occasionally infeasible. This project develops technologies to address these problems (particularly those dealing with differential analysis of brain images) via the lens of computer vision and machine learning. The algorithmic component of this project is (1) a suite of convex optimization based multi-modal learning schemes to seamlessly leverage a spectrum of brain imaging data, (2) new multi-resolution representations for inference with surface/network based signals (data derived from structural/functional brain images), and (3) using these mechanisms for boosting statistical power even in experiments with small sample sizes.The project has broad scientific impact. Extending the operating range of statistical image analysis methods for neuroimaging will foster a new inter-disciplinary area at the interface of computer vision, biostatistics, and machine learning, which is highly intellectually stimulating. The research team brings real neuroimaging research data for undergraduate/graduate students to explore and study. The project goals also include training and mentoring of students, increased involvement of under-represented groups, seminars, and an extensive set of outreach activities. In addition, the resultant software tools drive the analysis of neuroscience studies, which has clear broad societal impact.
对神经成像数据的假设检验传统上使用经典的统计检验(对单变量反应变量)。这使得图像结构的使用处于次优状态,如果被测试的两组人一开始就有微弱的差异,那么这就特别成问题了。未能检测到统计上的显著差异可能意味着实验本身的失败。获取更多的图像是昂贵的,但有时也不可行。这个项目开发了通过计算机视觉和机器学习的镜头来解决这些问题的技术(特别是那些处理大脑图像的差异分析的技术)。这个项目的算法部分是(1)一套基于凸优化的多模式学习方案,以无缝地利用脑成像数据的频谱,(2)用于与基于表面/网络的信号(来自结构/功能脑图像的数据)进行推理的新的多分辨率表示,以及(3)使用这些机制来提高统计能力,即使在小样本量的实验中也是如此。该项目具有广泛的科学影响。扩展神经成像统计图像分析方法的操作范围将在计算机视觉、生物统计学和机器学习的界面上培育一个新的交叉学科领域,这是高度智力刺激的。研究团队带来了真实的神经影像研究数据,供本科生/研究生探索研究。该项目的目标还包括对学生进行培训和指导、增加代表不足群体的参与、举办研讨会和一系列广泛的外联活动。此外,由此产生的软件工具推动了神经科学研究的分析,这显然具有广泛的社会影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vikas Singh其他文献
THE HABIT OF DIGIT SUCKING AMONG CHILDREN AND THE ATTITUDE OF MOTHER’S TOWARDS THE HABIT IN INDIA
印度儿童吸吮手指的习惯以及母亲对该习惯的态度
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Amandeep Chopra;Manav Lakhanpal;Vikas Singh;Nidhi Gupta;N. Rao;Varun Suri - 通讯作者:
Varun Suri
Global longitudinal strain: is it a superior assessment method for left ventricular function in patients with chronic mitral regurgitation undergoing mitral valve replacement?
整体纵向应变:对于接受二尖瓣置换术的慢性二尖瓣反流患者来说,它是左心室功能的更好评估方法吗?
- DOI:
10.1007/s12055-019-00854-7 - 发表时间:
2019 - 期刊:
- 影响因子:0.7
- 作者:
Vikas Singh;Sarvesh Kumar;M. Bhandari;Vijayant Devenraj;S. Singh - 通讯作者:
S. Singh
Presence of anti-viral and anti-parasitic antibodies and cardiovascular mortality: insights from NHANES III.
抗病毒和抗寄生虫抗体的存在与心血管死亡率:来自 NHANES III 的见解。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:3.5
- 作者:
P. Grover;A. Badheka;Neeraj Shah;Nileshkumar J Patel;K. Mehta;A. Chothani;Vikas Singh;Ghanshyambhai T. Savani;A. Deshmukh;A. Rathod;Nilay Patel;Sidak P Panaich;S. Arora;Dhaval Khalpada;Vipulkumar Bhalara;N. Parmar;T. Mohamad;Mauricio G. Cohen - 通讯作者:
Mauricio G. Cohen
AT-2FF: Adaptive Type-2 Fuzzy Filter for De-noising Images Corrupted with Salt-and-Pepper
- DOI:
10.48550/arxiv.2401.05392 - 发表时间:
2023-12 - 期刊:
- 影响因子:0
- 作者:
Vikas Singh - 通讯作者:
Vikas Singh
Response to Letter Regarding Article "Impact of Annual Operator and Institutional Volume on Percutaneous Coronary Intervention Outcomes: A 5-Year United States Experience (2005-2009)".
对有关文章“年度操作者和机构数量对经皮冠状动脉介入治疗结果的影响:美国五年经验(2005-2009)”的信件的回应。
- DOI:
10.1161/circulationaha.115.015221 - 发表时间:
2015 - 期刊:
- 影响因子:37.8
- 作者:
A. Badheka;Nileshkumar J Patel;P. Grover;Vikas Singh;Nilay Patel;S. Arora;A. Chothani;K. Mehta;A. Deshmukh;Ghanshyambhai T. Savani;Achint A. Patel;S. Panaich;Neeraj Shah;A. Rathod;Michael Brown;T. Mohamad;R. Makkar;T. Schreiber;C. Grines;C. Rihal;Mauricio G. Cohen - 通讯作者:
Mauricio G. Cohen
Vikas Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vikas Singh', 18)}}的其他基金
III: Small: Collaborative Research: Solving Matching Problems in Machine Learning with Non-commutative Harmonic Analysis
III:小:协作研究:用非交换调和分析解决机器学习中的匹配问题
- 批准号:
1320755 - 财政年份:2013
- 资助金额:
$ 47.8万 - 项目类别:
Standard Grant
RI: Small: Endowing Graph-Based Image Segmentation with Global 'Advice': Applications to Diffusion Tensor Images
RI:小:为基于图的图像分割赋予全局“建议”:在扩散张量图像中的应用
- 批准号:
1116584 - 财政年份:2011
- 资助金额:
$ 47.8万 - 项目类别:
Standard Grant
相似海外基金
[SaFEGen]: A Statistical Framework for efficient Evidence Generation in diagnostics
[SaFEGen]:诊断中有效生成证据的统计框架
- 批准号:
EP/X041298/1 - 财政年份:2024
- 资助金额:
$ 47.8万 - 项目类别:
Research Grant
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
- 批准号:
23H03353 - 财政年份:2023
- 资助金额:
$ 47.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Statistical approach for efficient and optimized evaluation of new treatment
用于有效和优化评估新疗法的统计方法
- 批准号:
23K09640 - 财政年份:2023
- 资助金额:
$ 47.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Efficient and Practical Privacy-Preserving Methods for Large-Scale Genomic Statistical Analysis
开发用于大规模基因组统计分析的高效实用的隐私保护方法
- 批准号:
23KJ0649 - 财政年份:2023
- 资助金额:
$ 47.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
- 批准号:
2221009 - 财政年份:2022
- 资助金额:
$ 47.8万 - 项目类别:
Continuing Grant
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
- 批准号:
RGPIN-2020-07064 - 财政年份:2022
- 资助金额:
$ 47.8万 - 项目类别:
Discovery Grants Program - Individual
Efficient Statistical and Computational Methods for Genetics and Dynamical Models
遗传学和动力学模型的高效统计和计算方法
- 批准号:
RGPIN-2019-06131 - 财政年份:2022
- 资助金额:
$ 47.8万 - 项目类别:
Discovery Grants Program - Individual
Statistical analysis and modelling of bi-modal autofluorescence-Raman imaging for efficient diagnosis and treatment of biological tissues
双模态自发荧光-拉曼成像的统计分析和建模,用于生物组织的高效诊断和治疗
- 批准号:
EP/W033895/1 - 财政年份:2022
- 资助金额:
$ 47.8万 - 项目类别:
Research Grant
Robust and Efficient Statistical Inference in Large Scale Semi-Supervised Settings
大规模半监督环境中稳健且高效的统计推断
- 批准号:
2113768 - 财政年份:2021
- 资助金额:
$ 47.8万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
- 批准号:
2106739 - 财政年份:2021
- 资助金额:
$ 47.8万 - 项目类别:
Continuing Grant