CAREER: Elucidating Light-Matter Interactions on the Nanoscale Using Quantum Many-Body Theory and the Electrodynamics of Swift Electrons
职业:利用量子多体理论和快速电子的电动力学阐明纳米尺度上的光与物质相互作用
基本信息
- 批准号:1253775
- 负责人:
- 金额:$ 62.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
David J. Masiello of the University of Washington is supported by a CAREER award from the Chemical Theory, Models and Computational Methods program in the Chemistry division to develop the first multiscale theory of nanoscale light-matter interaction capable of correlating swift (i.e., relativistically moving) electrons with photons to elucidate the structure and dynamics of quantum emitters/absorbers embedded within extreme plasmon-supporting environments.In particular, Professor Masiello and his research group will:1) Establish a first-principles, multiscale theoretical framework capable of rigorously describing the severe deformations of a molecule's electronic structure when coupled strongly to a plasmonic environment, described by continuum electrodynamics;2) Numerically implement the electrodynamics of a swift electron and its interactions with a complex nanoscopic environment to characterize the relationship between electron and photon-driven plasmonic excitations and their associated nanophotonic properties;3) Correlate electron- and photon-excitation sources to learn about the redistribution of energy between near- and far-field and nanoconfined heat in plasmonically active metal nanostructures in the presence of quantum emitters/absorbers, with an emphasis on the achieving high spatial and spectral resolution.This research will broadly impact the next generation of cutting-edge experiments in nanophotonics and nanoplasmonics by establishing rigorous and computationally tractable theoretical methods capable of elucidating and predicting observation in a first-principles manner. Significant impact will be made in understanding a variety of plasmon-enhanced molecular-optical processes from linear and nonlinear optical spectroscopy to sensing and catalysis, down to the single-molecule level. The knowledge gained from this research will establish the basic scientific underpinnings needed for future high-efficiency solar light-harvesting devices and chemical sensors of use in the medical and defense sectors. Professor Masiello and his group will also mentor under-represented minority students at the high-school and college-level through the University of Washington's Math Academy and Louis Stokes Alliance for Minority Participation Bridge Program. The goal of these efforts is to stimulate interest in science, technology, engineering, and mathematics among under-represented minorities by using advanced computational techniques to simulate the increased efficiency of novel solar-cell architectures enhanced by the addition of plasmonic nanoparticle assemblies.
华盛顿大学的David J. Masiello获得了化学理论,模型和计算方法计划的职业奖项,以开发第一个能够将Swift(即相对移动)与光子相关联的纳米级光线相互作用的多尺度理论,以阐明量子和动力学的量子和动力学,以阐明量子和动力学的量子,并具有量子的特定型号。 Masiello and his research group will:1) Establish a first-principles, multiscale theoretical framework capable of rigorously describing the severe deformations of a molecule's electronic structure when coupled strongly to a plasmonic environment, described by continuum electrodynamics;2) Numerically implement the electrodynamics of a swift electron and its interactions with a complex nanoscopic environment to characterize the relationship between electron and photon-driven plasmonic excitations and their associated nanophotonic properties;3) Correlate electron- and photon-excitation sources to learn about the redistribution of energy between near- and far-field and nanoconfined heat in plasmonically active metal nanostructures in the presence of quantum emitters/absorbers, with an emphasis on the achieving high spatial and spectral resolution.This research will broadly impact the next generation of通过建立能够以第一个原理方式阐明和预测观察的严格且可计算的理论方法,通过建立严格且计算上的理论方法进行了尖端实验。 从线性和非线性光谱到感应和催化,至单分子水平,将对从线性和非线性光谱进行各种等离子体增强的分子光学过程产生重大影响。 从这项研究中获得的知识将确定未来高效太阳能轻度收获设备所需的基本科学基础,以及医疗和国防领域的化学传感器。 Masiello教授及其小组还将通过华盛顿大学的数学学院和Louis Stokes Alliance攻读少数民族参与桥梁计划,指导高中和大学一级的代表不足的少数民族学生。 这些努力的目的是通过使用先进的计算技术来刺激代表性不足的少数群体中对科学,技术,工程和数学的兴趣,通过添加等离激元纳米粒子组件增强了新型太阳能结构效率的提高。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Masiello其他文献
Recruitment of (cid:1) -Catenin by Wild-Type or Mutant Androgen Receptors Correlates with Ligand-Stimulated Growth of Prostate Cancer Cells
野生型或突变型雄激素受体招募 (cid:1)-连环蛋白与配体刺激的前列腺癌细胞生长相关
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
David Masiello;Shaoyong Chen;Youyuan Xu;Manon C. Verhoeven;Eun;A. Hollenberg;S. Balk - 通讯作者:
S. Balk
Bendamustine therapy in chronic lymphocytic leukemia
苯达莫司汀治疗慢性淋巴细胞白血病
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:3.2
- 作者:
David Masiello;A. Tulpule - 通讯作者:
A. Tulpule
David Masiello的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Masiello', 18)}}的其他基金
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
- 批准号:
2118333 - 财政年份:2021
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
Model Theory of Enhanced Light-Matter Interaction in a PT-Symmetric Hybrid Optical Cavity
PT对称混合光腔中增强光-物质相互作用的模型理论
- 批准号:
1954393 - 财政年份:2020
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
QLC: EAGER: COLLABORATIVE RESEARCH: Cavity-Enhanced Strategies to Protect and Entangle Quantum Emitters
QLC:EAGER:协作研究:保护和纠缠量子发射器的腔增强策略
- 批准号:
1836506 - 财政年份:2018
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
OP: Model Theory of Single Nanoparticle Photothermal Absorption Spectroscopy via Optical Microresonators
OP:通过光学微谐振器进行单纳米粒子光热吸收光谱的模型理论
- 批准号:
1664684 - 财政年份:2017
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Nanoscale Temperature Manipulation via Plasmonic Fano Interferences
DMREF:协作研究:通过等离子体 Fano 干扰进行纳米级温度操纵
- 批准号:
1727092 - 财政年份:2017
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
- 批准号:
1708189 - 财政年份:2017
- 资助金额:
$ 62.5万 - 项目类别:
Standard Grant
相似国自然基金
基于ABPP-CCR策略阐明栀子苷改善原发性胆汁性胆管炎的机制
- 批准号:82304814
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
鉴定赖氨酸感知受体并阐明其调节代谢内稳态的机制
- 批准号:32371231
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
线粒体DNA损伤的机制阐明及其作为农药亚致死性暴露生物标志物的应用
- 批准号:82373538
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Cyclooctatin型抗肿瘤二萜生物合成途径阐明及化学多样性拓展
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
Cyclooctatin型抗肿瘤二萜生物合成途径阐明及化学多样性拓展
- 批准号:82273849
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
相似海外基金
Elucidating the role of the endogenous opioid dynorphin in reward seeking
阐明内源性阿片类强啡肽在寻求奖励中的作用
- 批准号:
10722734 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Elucidating the neuroimmune mechanisms underlying pain and inflammation in autoimmune arthritis
阐明自身免疫性关节炎疼痛和炎症的神经免疫机制
- 批准号:
10784407 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Elucidating the role of BDNF/Astrocytic TrkB.T1 signaling on perisynaptic astrocyte process recruitment
阐明 BDNF/星形胶质细胞 TrkB.T1 信号传导对突触周围星形胶质细胞过程招募的作用
- 批准号:
10463988 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
Elucidating the role of the VTA-NAc medial shell projection in motivation, extinction, and reinstatement
阐明 VTA-NAc 内侧壳投射在动机、消退和恢复中的作用
- 批准号:
10382808 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
Elucidating the role of the VTA-NAc medial shell projection in motivation, extinction, and reinstatement
阐明 VTA-NAc 内侧壳投射在动机、消退和恢复中的作用
- 批准号:
10574485 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别: