CAREER: Quantum Dot Degradation in Aquatic Environments
职业:水生环境中的量子点降解
基本信息
- 批准号:1254245
- 负责人:
- 金额:$ 32.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET-1254245Intellectual Merit. With the projected market for nanomaterial-based products approaching in the trillions of dollars annually, management of these products and their waste will inevitably pose challenges to environmental health, particularly when nanomaterials are released through product disposal or industrial waste streams. This study is a plan to describe quantum dot fate in representative aquatic settings subjected to broad chemical conditions while exploring specific degradation mechanisms and environmental factors that influence these processes. Quantum dots (QDs) are semiconducting nanocrystals with core/shell structures often less than 20 nm and employed in fluorescent measurements and energy applications, and, like other metallic nanoparticles studied over the past decade, may undergo physical (aggregation) and chemical (dissolution) transformations that influence their overall bioavailability upon release to receiving water bodies. While the toxicity of CdSe/ZnS QD and their leached metals have been examined closely for a variety of microorganisms, more mechanistic details of their degradation processes is needed for the various classes of QDs subjected to diverse aquatic chemistries in order to better predict their overall fate.The overall goal of this proposal is to determine how different types of QDs, both conventional and next-generation, degrade in aquatic environments and waste streams. Specific objectives are (1) to develop a robust, rapid analytical procedure for identifying and quantifying QD elements in their particulate, complexed, and dissolved forms with almost no sample pre-treatment using single-particle inductively coupled plasma mass spectrometry (SP-ICPMS) and size exclusion chromatography (SEC-ICPMS), (2) to identify the ligand groups of various types of organic matter that promote QD degradation and element release, (3) to determine influence of UV and visible light in promoting QD degradation, (4) to evaluate other inorganic geochemistry factors such as dissolved hydrogen, oxygen, and sulfide that may influence QD degradation, and (5) to determine whether physicochemical properties of QD coatings can be altered to prevent QD degradation. Reaction rates and product distributions will be determined within batch reactors containing various combinations of QDs and geochemical constituents. The results will provide fundamental information on the roles of geochemical solution conditions, dissolved organic compounds, and UV and visible light exert on the dissolution of a variety of QDs. The SP-ICPMS developed here will have application to other metallic nanoparticle measurements in waters.Broader Impacts The laboratory investigations into QD degradation processes will lead to a deeper understanding of QD longevity to be expected upon release into aquatic environments, and this information will lead to improved designs of QD coatings. This work will provide education for one graduate student per year and several undergraduate students in environmental engineering. The research opportunity provides diverse experimental and analytical instrumentation training in water quality, inorganic synthesis chemistry, and mineralogical techniques. Broadened participation of underrepresented groups will be addressed by providing experiential learning opportunities through hands-on laboratory engagement to undergraduate students, Massachusetts state teachers, and local high school students. Their research experiences will be integrated into the PI's Research Program by supporting QD synthesis, reaction, and characterization methods as well as the Educational Program by assisting development of educational materials for the instruction of broad audiences about the principles of environmental science and engineering. These materials are intended to foster systems thinking education using WWW-based multimedia modules comprised of graphical, video, and systems modeling tools. The results of this Educational Program will reach local middle school, high school, and undergraduate students through field trip demonstrations and curriculum modules.
CBET-1254245智能功绩。随着基于纳米材料的产品的预计市场接近每年数万亿美元,这些产品及其废物的管理将不可避免地对环境健康构成挑战,特别是当纳米材料通过产品处置或工业废物流释放时。这项研究计划描述在广泛的化学条件下典型的水生环境中量子点的命运,同时探索影响这些过程的具体降解机制和环境因素。量子点是核/壳结构通常小于20 nm的半导体纳米晶体,用于荧光测量和能量应用,与过去十年研究的其他金属纳米颗粒一样,可能经历物理(聚集)和化学(溶解)转化,在释放到接收水体时影响其整体生物利用度。虽然对各种微生物的镉锌量子点及其浸出金属的毒性进行了密切的研究,但为了更好地预测它们的整体命运,需要对不同类型的量子点在不同的水化学条件下的降解过程进行更多的机械细节。这项提议的总体目标是确定不同类型的量子点,包括传统的和下一代的,是如何在水环境和废水中降解的。具体目标是(1)开发一种稳健、快速的分析方法,用于在几乎没有样品的情况下使用单粒子电感耦合等离子体质谱(SP-ICPMS)和尺寸排除色谱(SEC-ICPMS)来识别和定量颗粒、络合和溶解形式中的QD元素,(2)识别促进QD降解和元素释放的各种类型的有机物的配位基,(3)确定紫外光和可见光对促进QD降解的影响,(4)评估可能影响QD降解的其他无机地球化学因素,如溶解氢、氧和硫化物,以及(5)确定是否可以改变量子点涂层的物理化学性质以防止量子点降解。反应速率和产物分布将在包含各种量子点和地球化学组分组合的间歇反应器中确定。这些结果将提供有关地化溶液条件、溶解的有机化合物以及紫外光和可见光对各种量子点的溶解所起作用的基本信息。本文开发的SP-ICPMS将应用于水中其他金属纳米颗粒的测量。对量子点降解过程的实验室研究将使人们对释放到水环境中的量子点寿命有更深入的了解,这些信息将导致改进量子点涂层的设计。这项工作将为每年一名研究生和几名本科生提供环境工程方面的教育。该研究机会提供了在水质、无机合成化学和矿物学技术方面的各种实验和分析仪器培训。通过向本科生、马萨诸塞州教师和当地高中生提供动手实验室参与的体验学习机会,将解决代表性不足群体的更广泛参与问题。他们的研究经验将被整合到PI的研究计划中,通过支持量子点合成、反应和表征方法,以及通过协助开发教育材料,向广大受众讲授环境科学和工程原理。这些材料旨在使用由图形、视频和系统建模工具组成的基于WWW的多媒体模块来培养系统思维教育。这一教育计划的成果将通过实地考察演示和课程模块惠及当地的初中、高中和本科生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Larese-Casanova其他文献
Chromium removal from concentrated ammonium-nitrate solution: Electrocoagulation with iron in a plug-flow reactor
- DOI:
10.1016/j.seppur.2024.129353 - 发表时间:
2025-02-19 - 期刊:
- 影响因子:
- 作者:
Eliza Costigan;Siqi Wu;Matthew Eckelman;Loretta Fernandez;Amy Mueller;Akram Alshawabkeh;Philip Larese-Casanova - 通讯作者:
Philip Larese-Casanova
Philip Larese-Casanova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Larese-Casanova', 18)}}的其他基金
Collaborative Research: Recrystallization of Stable Iron Oxides in Reducing Environments
合作研究:还原环境中稳定氧化铁的再结晶
- 批准号:
1451253 - 财政年份:2015
- 资助金额:
$ 32.33万 - 项目类别:
Standard Grant
Insights to Selenium Cycling and Remediation Revealed by Stable Oxygen Isotopes
稳定氧同位素揭示的硒循环和修复见解
- 批准号:
1236182 - 财政年份:2012
- 资助金额:
$ 32.33万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Multi-scale Mechanical Behavior of Quantum Dot Nanocomposites: Towards Data-driven Automatic Discovery of High-performance Structures
职业:量子点纳米复合材料的多尺度机械行为:迈向数据驱动的高性能结构的自动发现
- 批准号:
2145604 - 财政年份:2022
- 资助金额:
$ 32.33万 - 项目类别:
Standard Grant
CAREER: Characterization of quantum dot qubits by scannable mechanical resonator
职业:通过可扫描机械谐振器表征量子点量子位
- 批准号:
2044920 - 财政年份:2021
- 资助金额:
$ 32.33万 - 项目类别:
Continuing Grant
CAREER: Mid-Infrared Quantum Dot Cascade Lasers
职业:中红外量子点级联激光器
- 批准号:
1711858 - 财政年份:2016
- 资助金额:
$ 32.33万 - 项目类别:
Standard Grant
CAREER: Next-Generation Liquid Scintillator Detectors: Picosecond Timing and Quantum-Dot-Doped Scintillator
职业:下一代液体闪烁体探测器:皮秒定时和量子点掺杂闪烁体
- 批准号:
1554875 - 财政年份:2015
- 资助金额:
$ 32.33万 - 项目类别:
Continuing Grant
CAREER: Structural and Functional Mimics of Colloidal Quantum Dot Surfaces
职业:胶体量子点表面的结构和功能模拟
- 批准号:
1454930 - 财政年份:2015
- 资助金额:
$ 32.33万 - 项目类别:
Continuing Grant
CAREER: Next-Generation Liquid Scintillator Detectors: Picosecond Timing and Quantum-Dot-Doped Scintillator
职业:下一代液体闪烁体探测器:皮秒定时和量子点掺杂闪烁体
- 批准号:
1352116 - 财政年份:2014
- 资助金额:
$ 32.33万 - 项目类别:
Continuing Grant
CAREER: Interfacing Remote Quantum Dot Nanostructures by Resonant Light Scattering
职业:通过共振光散射连接远程量子点纳米结构
- 批准号:
1254324 - 财政年份:2013
- 资助金额:
$ 32.33万 - 项目类别:
Continuing Grant
CAREER: Mid-Infrared Quantum Dot Cascade Lasers
职业:中红外量子点级联激光器
- 批准号:
1157933 - 财政年份:2011
- 资助金额:
$ 32.33万 - 项目类别:
Standard Grant
CAREER: Mid-Infrared Quantum Dot Cascade Lasers
职业:中红外量子点级联激光器
- 批准号:
1055241 - 财政年份:2011
- 资助金额:
$ 32.33万 - 项目类别:
Standard Grant
CAREER: Local Charge, Polarization, and Transport of Nanocrystal Quantum Dot Solid State Structures using Scanning Probe Microscopy
职业:使用扫描探针显微镜研究纳米晶体量子点固态结构的局部电荷、极化和输运
- 批准号:
0955348 - 财政年份:2010
- 资助金额:
$ 32.33万 - 项目类别:
Continuing Grant














{{item.name}}会员




