CAREER: Local-global phenomena and sieves in thin orbits
职业:局部全局现象和薄轨道中的筛子
基本信息
- 批准号:1254788
- 负责人:
- 金额:$ 45.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2014-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is concerned largely with novel variants of Hilbert's 11th Problem, namely establishing local-to-global principles in unconventional settings. Specifically, the PI will study integers represented by thin orbits, a quintessential example being integral Apollonian gaskets. The PI proposes to extend existing tools to many other situations, including Apollonian 3-gaskets and Soddy sphere packings, with the long-term goal of better understanding circumstances under which the circle method and exponential sum bounds for multi-linear forms, applied to such thin orbits, can succeed. In situations where even an "almost" local-global statement seems out of reach of current technology, the PI will develop new exponential sum bounds to improve the number of R-almost primes which can be produced from an Affine Sieve. The PI will also develop numerical algorithms to explore the Laplace spectrum of infinite volume hyperbolic manifolds, and strive to rigorously certify that numerically observed eigenvalues actually correspond to true spectra.Integrated with the proposed research projects are numerous educational and outreach components. The PI will continue to advise high school through graduate students, and organize seminars, meetings, and conferences. A new course at Yale will be developed for non-math majors, with the goal of popularizing mathematics to broader audiences, including discussions of recent research activity. The PI will give lectures through the Office of New Haven and State Affairs, and Science Saturdays at Yale, to the general public, specifically geared for middle and high school students in the Pathways to Science program. This proposal will also support the attendance of underprivileged New Haven area middle school students to the MathCounts competition. Through such avenues, the PI will be in a position to bring traditionally under-represented groups into contact with cutting-edge research.This award is cofunded by the Algebra and Number Theory and the Analysis programs.
这一提议主要涉及希尔伯特第11问题的新变体,即在非常规环境中建立局部到全局的原则。具体来说,PI将研究由薄轨道表示的整数,一个典型的例子是积分阿波罗垫圈。PI建议将现有的工具扩展到许多其他情况,包括阿波罗3-垫圈和Soddy球填料,长期目标是更好地理解应用于这种薄轨道的多线性形式的圆方法和指数和界可以成功的情况。在甚至“几乎”局部-全局陈述似乎超出当前技术范围的情况下,PI将开发新的指数和界,以提高可以从仿射筛产生的R-几乎素数的数量。PI还将开发数值算法来探索无限体积双曲流形的拉普拉斯谱,并努力严格证明数值观察到的特征值实际上对应于真实谱。与拟议的研究项目相结合的是许多教育和推广组件。PI将继续通过研究生为高中提供建议,并组织研讨会,会议和会议。耶鲁大学将为非数学专业的学生开发一门新课程,目标是向更广泛的受众普及数学,包括讨论最近的研究活动。PI将通过纽黑文和国家事务办公室以及耶鲁大学的科学星期六向公众授课,特别是针对科学之路项目中的初中和高中学生。该提案还将支持纽黑文地区贫困中学生参加MathCounts竞赛。通过这些途径,PI将能够使传统上代表性不足的群体接触到前沿研究。该奖项由代数和数论以及分析项目共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex Kontorovich其他文献
The Affine Sieve Beyond Expansion I: Thin Hypotenuses
超越扩展的仿射筛 I:细斜边
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
J. Bourgain;Alex Kontorovich - 通讯作者:
Alex Kontorovich
On length sets of subarithmetic hyperbolic manifolds
关于次算术双曲流形的长度集
- DOI:
10.1007/s00208-023-02713-8 - 发表时间:
2022 - 期刊:
- 影响因子:1.4
- 作者:
Alex Kontorovich;Xin Zhang - 通讯作者:
Xin Zhang
Almost prime Pythagorean triples in thin orbits
薄轨道上的近素毕达哥拉斯三元组
- DOI:
10.1515/crelle.2011.128 - 发表时间:
2010 - 期刊:
- 影响因子:4.6
- 作者:
Alex Kontorovich;H. Oh - 通讯作者:
H. Oh
On the Pair Correlation Density for Hyperbolic Angles
关于双曲角的配对相关密度
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Dubi Kelmer;Alex Kontorovich - 通讯作者:
Alex Kontorovich
Alex Kontorovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex Kontorovich', 18)}}的其他基金
Number Theory, Geometry, and Dynamics
数论、几何和动力学
- 批准号:
2302641 - 财政年份:2023
- 资助金额:
$ 45.4万 - 项目类别:
Continuing Grant
Thin Groups in Geometry and Arithmetic
几何和算术中的薄群
- 批准号:
1802119 - 财政年份:2018
- 资助金额:
$ 45.4万 - 项目类别:
Continuing Grant
FRG: COLLABORATIVE RESEARCH: Super Approximation and Thin Groups, with Applications to Geometry, Groups, and Number Theory
FRG:协作研究:超逼近和薄群,及其在几何、群和数论中的应用
- 批准号:
1463940 - 财政年份:2015
- 资助金额:
$ 45.4万 - 项目类别:
Continuing Grant
CAREER: Local-global phenomena and sieves in thin orbits
职业:局部全局现象和薄轨道中的筛子
- 批准号:
1455705 - 财政年份:2014
- 资助金额:
$ 45.4万 - 项目类别:
Continuing Grant
Collaborative Research: Automorphic Forms, Representations and L-functions
合作研究:自守形式、表示和 L 函数
- 批准号:
1209373 - 财政年份:2011
- 资助金额:
$ 45.4万 - 项目类别:
Standard Grant
Collaborative Research: Automorphic Forms, Representations and L-functions
合作研究:自守形式、表示和 L 函数
- 批准号:
1001252 - 财政年份:2010
- 资助金额:
$ 45.4万 - 项目类别:
Standard Grant
Collaborative Research: Automorphic Forms, Representations and L-functions
合作研究:自守形式、表示和 L 函数
- 批准号:
1064214 - 财政年份:2010
- 资助金额:
$ 45.4万 - 项目类别:
Standard Grant
相似国自然基金
具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
- 批准号:11872210
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
miRNA-140调控软骨Local RAS对骨关节炎中骨-软骨复合单元血管增生和交互作用影响的研究
- 批准号:81601936
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
- 批准号:
2317079 - 财政年份:2024
- 资助金额:
$ 45.4万 - 项目类别:
Standard Grant
Local Meets Global: Engaging with International Development Research, Policy and Practice around Gender and Social Transformation
地方与全球相遇:参与围绕性别和社会转型的国际发展研究、政策和实践
- 批准号:
ES/Y010353/1 - 财政年份:2023
- 资助金额:
$ 45.4万 - 项目类别:
Fellowship
Collaborative Research: From Global to Local: Geochemistry of Global Phosphate Ores and Implications for Tracing the Environmental Impacts of Fertilizers Utilization
合作研究:从全球到地方:全球磷矿石的地球化学以及追踪化肥利用对环境影响的意义
- 批准号:
2305947 - 财政年份:2023
- 资助金额:
$ 45.4万 - 项目类别:
Continuing Grant
A local approach to the implementation of a global plastic treaty
实施全球塑料条约的本地方法
- 批准号:
23K12429 - 财政年份:2023
- 资助金额:
$ 45.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Global monocultures and local diversity: Gilbert White, and natural observation as a form of community-building
全球单一文化和地方多样性:吉尔伯特·怀特和自然观察作为社区建设的一种形式
- 批准号:
2878509 - 财政年份:2023
- 资助金额:
$ 45.4万 - 项目类别:
Studentship
Global Issues, Local Issues: The SDGs and Social Justice in Japan and Abroad
全球问题、地方问题:日本和国外的可持续发展目标和社会正义
- 批准号:
23K00665 - 财政年份:2023
- 资助金额:
$ 45.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
he Construction of Medicine v.s. Non-medicine: a Historical and Social Study of Herbs' Materiality and Knowledge Productions in the Local and Global Context
他的医学建设与。
- 批准号:
23K12073 - 财政年份:2023
- 资助金额:
$ 45.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Children of War: Evolving Local and Global Understandings of Child Soldiering in African Conflicts, c.1940-2000
战争儿童:当地和全球对非洲冲突中儿童兵的理解的演变,c.1940-2000
- 批准号:
AH/X00399X/1 - 财政年份:2023
- 资助金额:
$ 45.4万 - 项目类别:
Research Grant
Zero-cycles over local and global fields
局部和全局领域的零循环
- 批准号:
2302196 - 财政年份:2023
- 资助金额:
$ 45.4万 - 项目类别:
Standard Grant
Local Governments and Policy Processes of Producing 'Global Human Resources': Japan's National Project of Internationalizing Education
地方政府和培养“全球人力资源”的政策进程:日本国家教育国际化项目
- 批准号:
23K12731 - 财政年份:2023
- 资助金额:
$ 45.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists