CAREER: Elucidating the material properties of complex tunable biopolymer networks using single-molecule nano stress-strain transducers and sensors
职业:使用单分子纳米应力应变传感器和传感器阐明复杂可调谐生物聚合物网络的材料特性
基本信息
- 批准号:1255446
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ID: MPS/DMR/BMAT(7623) 1255446 PI: Anderson, Rae ORG: University of San DiegoTitle: CAREER: Elucidating the material properties of complex tunable biopolymer networks using single-molecule nano stress-strain transducers and sensorsINTELLECTUAL MERIT: Actin is a highly multifunctional protein that polymerizes and forms a wide range of complex networks with the help of numerous actin-binding proteins (ABPs). These networks, each designed for specific biological functions, have very different structural and dynamical properties as well as mechanical responses to stress and strain. The hierarchical nature and tunability of actin networks provides a promising route for the bottom-up design of multifunctional biomimetic materials. However, to implement such design, the molecular dynamics and interactions that give rise to such attractive material properties must be understood. Bulk studies have examined the viscoelasticity and mechanical response of actin networks, but such studies are unable to reveal the molecular mechanics underlying the material properties or any spatial or temporal variations within the material. While single-molecule studies have examined the mechanical properties of single actin filaments and actin-ABP constructs, a connection between the mechanics of single network components and the bulk mechanical response is still lacking. Using fluorescence force-measuring dual optical tweezers and a novel technique in which single molecules serve as nano stress-strain transducers and sensors, the PI will, for the first time, directly measure the resistive force exerted by a network at the molecular level (piconewton precision) in response to a molecular-scale strain (nanometer/millisecond precision) while simultaneously imaging and tracking single molecules experiencing the strain in real-time. These measurements -- the first of their kind -- will reveal the much-needed link between molecular deformation (strain) and resistive force (stress), and will provide a powerful description of the connection between the mechanics of the individual network components and the bulk mechanical response. Thus, results will fill a long-standing gap in knowledge regarding the mechanical behavior of complex biopolymer networks.BROADER IMPACTS: The project will provide critical insights to a range of fields from molecular and cellular biology to materials science and engineering. If understood at the molecular level, the broad range of mechanical properties exhibited in biopolymer networks could be harnessed to spatiotemporally regulate the mechanical properties of novel hierarchical network-based materials. The innovative techniques developed and employed are also highly versatile and can be used to probe a wide range of mechanical properties existing in a variety of different biomaterials. Undergraduates from all STEM disciplines have and will continue to play a central role in the PI's research. The PI will also continue to mentor local high school students, creating a rich interdisciplinary research experience for all students. To further broaden the impact of the PI's research, she will develop a highly interdisciplinary Biophysics Major program at the University of San Diego that will prepare undergraduates to contribute effectively to the interdisciplinary scientific arena and attract more women to the physical sciences. The PI will develop and teach three new courses for the major. The PI's research and instrumentation will play an integral role in each course. The PI, along with a diverse group of STEM faculty, is also developing a novel interdisciplinary service-learning course in which undergraduates develop interactive science projects that they execute with K-6 students in an afterschool program serving mainly first-generation immigrants. The PI will develop a summer program in which Biophysics majors who complete this course refine and disseminate these projects to other afterschool programs and institutions. Research results, pedagogical findings, and outreach models will be disseminated primarily via publication in peer-reviewed journals, presentations by the PI and students at professional conferences, and through robust web-based methods.
ID: MPS/DMR/BMAT(7623) 1255446 PI: Anderson, Rae ORG: University of San DiegoTitle: CAREER: Elucidating the material properties of complex tunable biopolymer networks using single-molecule nano stress-strain transducers and sensorsINTELLECTUAL MERIT: Actin is a highly multifunctional protein that polymerizes and forms a wide range of complex networks with the许多肌动蛋白结合蛋白(ABP)的帮助。 这些网络均设计用于特定的生物学功能,具有非常不同的结构和动力学特性,以及对压力和应变的机械响应。 肌动蛋白网络的分层性质和可调节性为多功能仿生材料的自下而上设计提供了有希望的途径。 但是,必须了解产生这种吸引人材料特性的分子动力学和相互作用。 大量研究检查了肌动蛋白网络的粘弹性和机械响应,但是这些研究无法揭示材料特性或材料内任何空间或时间变化的分子力学。 虽然单分子研究研究了单肌动蛋白丝和肌动蛋白-ABP构建体的机械性能,但仍然缺乏单个网络组件的力学与大量力学响应之间的联系。 使用荧光力测量双光学镊子和一种新型技术,其中单分子用作纳米应力 - 应变换能器和传感器,PI将首次直接测量网络在分子水平(Piconewton精确度上)响应分子尺度量的网络(nanan cece)的电阻(nanan cece)(Nanan cece)(Nanan cece)(Nanan cece)(Nanan scale Pecive)(Nanan cece)(Nanan scale Pecive))实时经历菌株的分子。 这些测量值(同类的第一个测量值)将揭示分子变形(应变)和电阻力(应力)之间急需的联系,并将对单个网络组件的力学与大型力学响应之间的联系提供有力的描述。 因此,结果将填补有关复杂生物聚合物网络的机械行为的长期差距。Broader的影响:该项目将为从分子和细胞生物学到材料科学和工程学的一系列领域提供关键见解。 如果在分子水平上理解,则可以利用在生物聚合物网络中表现出的广泛的机械性能,以时空调节新型层次网络材料的机械性能。 开发和使用的创新技术也具有高度的用途,可用于探测各种不同生物材料中存在的广泛的机械性能。 来自所有STEM学科的大学生都具有并将继续在PI的研究中发挥核心作用。 PI还将继续指导当地高中生,为所有学生创造丰富的跨学科研究经验。 为了进一步扩大PI研究的影响,她将在圣地亚哥大学开发一项高度跨学科的生物物理学大型计划,该计划将为大学生做好准备,以有效地为跨学科的科学领域做出贡献,并吸引更多女性进入物理科学。 PI将开发并为专业教授三个新课程。 PI的研究和仪器将在每个课程中发挥不可或缺的作用。 PI以及一组STEM教师也正在开发一项新颖的跨学科服务学习课程,在该课程中,本科生开发了交互式科学项目,他们在主要的第一年移民服务的后教学课程中与K-6学生一起执行,他们在K-6中执行。 PI将开发一个夏季计划,其中完成本课程的生物物理专业人士将完善并将这些项目传播给其他课后计划和机构。 研究结果,教学结果和外展模型将主要通过在同行评审期刊中出版,PI和学生在专业会议上的演讲以及强大的基于Web的方法来传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rae Robertson-Anderson其他文献
Kinesin-driven active cytoskeletal composite restructuring
- DOI:
10.1016/j.bpj.2022.11.1504 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Maya Hendija;Rae Robertson-Anderson;Daisy H. Achiriloaie;Jennifer L. Ross - 通讯作者:
Jennifer L. Ross
Dynamic concatenation of ring DNA leads to non-equilibrium viscoelasticity tuned by DNA size and concentration
- DOI:
10.1016/j.bpj.2022.11.1650 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Philip Neill;Juexin Marfai;Cindy Sumair;Ryan McGorty;Rae Robertson-Anderson - 通讯作者:
Rae Robertson-Anderson
Dynamic concatenation leads to anomalous transport of ring DNA in concentrated solutions
- DOI:
10.1016/j.bpj.2022.11.330 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Juexin Marfai;Philip Neill;Ryan McGorty;Rae Robertson-Anderson - 通讯作者:
Rae Robertson-Anderson
Tuning the depolymerization and restructuring of actin networks via thymosin and cofilin
- DOI:
10.1016/j.bpj.2022.11.2215 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Alyxandra Vyn;Mehrzad Sasanpour;Michael J. Rust;Jennifer L. Ross;Rae Robertson-Anderson - 通讯作者:
Rae Robertson-Anderson
Mobility and Conformational Dynamics of Large DNA Diffusing through Cytoskeletal Networks
- DOI:
10.1016/j.bpj.2017.11.3274 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Kathryn Regan;Rachel Dotterweich;Shea Ricketts;Rae Robertson-Anderson - 通讯作者:
Rae Robertson-Anderson
Rae Robertson-Anderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rae Robertson-Anderson', 18)}}的其他基金
Collaborative Research: DMREF: Living biotic-abiotic materials with temporally programmable actuation
合作研究:DMREF:具有临时可编程驱动的生物-非生物活性材料
- 批准号:
2119663 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: Dynamics of Circular Macromolecules (DNA): From Single Molecule to Highly Entangled States
合作研究:圆形大分子 (DNA) 动力学:从单分子到高度纠缠态
- 批准号:
1603925 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于ABPP-CCR策略阐明栀子苷改善原发性胆汁性胆管炎的机制
- 批准号:82304814
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
鉴定赖氨酸感知受体并阐明其调节代谢内稳态的机制
- 批准号:32371231
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
线粒体DNA损伤的机制阐明及其作为农药亚致死性暴露生物标志物的应用
- 批准号:82373538
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Cyclooctatin型抗肿瘤二萜生物合成途径阐明及化学多样性拓展
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
Cyclooctatin型抗肿瘤二萜生物合成途径阐明及化学多样性拓展
- 批准号:82273849
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
相似海外基金
Computational homogenization of soft composite plates and shells toward elucidating high-order geometrical pattern transformation
软复合材料板壳的计算均质化以阐明高阶几何图案变换
- 批准号:
22K14142 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidating dynamics of molecular orientation of chiral liquid crystals under spatio-temporal confinement
阐明时空限制下手性液晶分子取向的动力学
- 批准号:
22K14737 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidating mechanisms for enhanced anaerobic bioremediation in the presence of carbonaceous materials using an integrated material science and molecular microbial ecology approach
使用综合材料科学和分子微生物生态学方法阐明在碳质材料存在下增强厌氧生物修复的机制
- 批准号:
10322188 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
The Evolution of Material in the Inner Solar System: Elucidating the History of Enstatite Chondrites
内太阳系物质的演化:阐明顽火辉石球粒陨石的历史
- 批准号:
2604115 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Studentship
Establishment of structural measurement system for elucidating mechanism of giant piezoelectric response of pseudo-cubic fluctured ferroelectrics
建立结构测量系统以阐明赝立方断面铁电体巨压电响应机制
- 批准号:
20H02641 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)